• Title/Summary/Keyword: Full Compatibility

Search Result 94, Processing Time 0.025 seconds

Theoretical and experimental study on shear strength of precast steel reinforced concrete beam

  • Yang, Yong;Xue, Yicong;Yu, Yunlong
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.443-454
    • /
    • 2019
  • With the aim to put forward the analytical model for calculating the shear capacity of precast steel reinforced concrete (PSRC) beams, a static test on two full-scale PSRC specimens was conducted under four-point loading, and the failure modes and strain developments of the specimens were critically investigated. Based on the test results, a modified truss-arch model was proposed to analyze the shear mechanisms of PSRC and cast-in-place SRC beams. In the proposed model, the overall shear capacity of PSRC and cast-in-place SRC beams can be obtained by combining the shear capacity of encased steel shape with web concrete determined by modified Nakamura and Narita model and the shear capacity of reinforced concrete part determined by compatible truss-arch model which can consider both the contributions of concrete and stirrups to shear capacity in the truss action as well as the contribution of arch action through compatibility of deformation. Finally, the proposed model is compared with other models from JGJ 138 and AISC 360 using the available SRC beam test data consisting of 75 shear-critical PSRC and SRC beams. The results indicate that the proposed model can improve the accuracy of shear capacity predictions for shear-critical PSRC and cast-in-place SRC beams, and relatively conservative results can be obtained by the models from JGJ 138 and AISC 360.

The Effect of Part-time Work on the Satisfaction of Personal Life - Using Seoul Survey - (시간제 근로 및 성별에 따른 개인의 삶의 만족도 분석 - 「서울서베이 도시정책지표조사」를 이용하여 -)

  • Kim, Jae Won;Lim, Up
    • Journal of the Korean Regional Science Association
    • /
    • v.35 no.2
    • /
    • pp.59-71
    • /
    • 2019
  • Korea's average annual working hours are among the highest in the OECD. Such long-term work has been a factor that reduces the quality of life by discouraging workers' productivity and interrupting the compatibility of work and family, prompting the government to encourage flexible work systems, such as increasing part-time jobs, but a lack of quality part-time jobs. Part-time work enables flexible labor for workers, but at the same time, workers will involuntarily opt for part-time work as they have poor working conditions and negative social views. In this respect, the effect of the working type on an individual's life is expected to be different. In addition, for women, gender gaps exist in the labor market and the impact of part-time work on life satisfaction is expected to differ from men in terms of working and family alike. Using the data from the 2017 "Seoul Survey Urban Policy Indicator Survey", the ordered logistic regression model was used to analyze the cross-effect of working type and sex on satisfaction. The analysis of the study showed that when other factors were controlled, life satisfaction was high in the order of fulltime female, full-time male, part-time female, and part-time male. In addition, further analysis shows that the parttime female workers have the highest probability of choosing low life satisfaction, while the probability of choosing high life satisfaction is the lowest, and full-time male workers have the lowest probability of choosing low life satisfaction, while the highest probability of choosing high life satisfaction is the highest.

Multiscale modeling of reinforced/prestressed concrete thin-walled structures

  • Laskar, Arghadeep;Zhong, Jianxia;Mo, Y.L.;Hsu, Thomas T.C.
    • Interaction and multiscale mechanics
    • /
    • v.2 no.1
    • /
    • pp.69-89
    • /
    • 2009
  • Reinforced and prestressed concrete (RC and PC) thin walls are crucial to the safety and serviceability of structures subjected to shear. The shear strengths of elements in walls depend strongly on the softening of concrete struts in the principal compression direction due to the principal tension in the perpendicular direction. The past three decades have seen a rapid development of knowledge in shear of reinforced concrete structures. Various rational models have been proposed that are based on the smeared-crack concept and can satisfy Navier's three principles of mechanics of materials (i.e., stress equilibrium, strain compatibility and constitutive laws). The Cyclic Softened Membrane Model (CSMM) is one such rational model developed at the University of Houston, which is being efficiently used to predict the behavior of RC/PC structures critical in shear. CSMM for RC has already been implemented into finite element framework of OpenSees (Fenves 2005) to come up with a finite element program called Simulation of Reinforced Concrete Structures (SRCS) (Zhong 2005, Mo et al. 2008). CSMM for PC is being currently implemented into SRCS to make the program applicable to reinforced as well as prestressed concrete. The generalized program is called Simulation of Concrete Structures (SCS). In this paper, the CSMM for RC/PC in material scale is first introduced. Basically, the constitutive relationships of the materials, including uniaxial constitutive relationship of concrete, uniaxial constitutive relationships of reinforcements embedded in concrete and constitutive relationship of concrete in shear, are determined by testing RC/PC full-scale panels in a Universal Panel Tester available at the University of Houston. The formulation in element scale is then derived, including equilibrium and compatibility equations, relationship between biaxial strains and uniaxial strains, material stiffness matrix and RC plane stress element. Finally the formulated results with RC/PC plane stress elements are implemented in structure scale into a finite element program based on the framework of OpenSees to predict the structural behavior of RC/PC thin-walled structures subjected to earthquake-type loading. The accuracy of the multiscale modeling technique is validated by comparing the simulated responses of RC shear walls subjected to reversed cyclic loading and shake table excitations with test data. The response of a post tensioned precast column under reversed cyclic loads has also been simulated to check the accuracy of SCS which is currently under development. This multiscale modeling technique greatly improves the simulation capability of RC thin-walled structures available to researchers and engineers.

An Analysis of Road User Acceptance Factors for Fully Autonomous Vehicles : For Drivers and Pedestrians (완전 자율주행자동차에 대한 도로이용자 수용성 요인 분석 : 운전자 및 보행자를 대상으로)

  • Jeong, Mi-Kyeong;Choi, Mee-Sun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.117-132
    • /
    • 2022
  • The purpose of this study is to analyze factors that affect road users' acceptance of fully autonomous vehicles (level 4 or higher). A survey was done with drivers of general cars and pedestrians who share roads with fully autonomous vehicles. Five acceptability factors were selected: trust towards technology, compatibility, policy, perceived safety, and perceived usefulness. The effect on behavioral intention was analyzed using structural equation modeling (SEM). The perceived safety and trust towards technology were found to be very important in the acceptance of fully autonomous vehicles, regardless of the respondent, and policy was not influential. Compatibility and perceived usefulness were particularly influential factors for drivers. In order to improve the acceptance by road users, securing technical completeness of fully autonomous vehicles is important. Certification and evaluation of the safe driving ability of fully autonomous vehicles should be thoroughly performed, and based on the results, it is necessary to improve the perception by road users. It is necessary to positively recognize fully autonomous vehicles through education and publicity for road users and to support their smooth interaction.

Multi-functional (Temperature, Pressure, Humidity) Sensor by MEMS technology (MEMS 기술을 이용한 온도, 압력, 습도 복합 센서)

  • Kwon Sang-wook;Won Jong-Hwa
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.11
    • /
    • pp.1-8
    • /
    • 2005
  • In this paper, we present design and prototyping of a low-cost, integrated multi-functional micro health sensor chip that can be used or embedded in widely consumer devices, such as cell phone and PDA, for monitoring environmental condition including air pressure, temperature and humidity. This research's scope includes basic individual sensor study, architecture for integrating sensors on a chip, fabrication process compatibility and test/evaluation of prototype sensors. The results show that the integrated TPH sensor has good characteristics of ${\pm}\;1\%FS$ of linearity and hysteresis for pressure sensor and temperature sensor and of ${\pm}\;5\%FS$ of linearity and hysteresis But if we use 3rd order approximation for humidity sensor, full scale error becomes much smaller and this will be one of our future study.

Electromagnatic Effect Analysis inside Electrically Large Structures Using Topological Modeling and PWB Method (위상학적 모델링과 PWB Method를 이용한 대형 구조물 내부의 전자파 영향 해석)

  • Lee, Jae-Min;Jung, In-Hwan;Lee, Jae-Wook;Lee, Young-Seung;Kwon, Jong-Hwa
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.284-290
    • /
    • 2016
  • As the recently advanced scientific developments result in high lever of the usability and the needs for the electrical equipment and devices in various situations, the safety technologies protecting malfunction and electrical critical damages including soft and hardware from the unexpectedly radiated electromagnetic interferences are required gradually. In addition, the numerical analysis for the miniaturized electrical components and equipments as well as the conventional electrical devices installed inside the electrically large enclosures and structures requires the memory requirement and time consumption too big to be handled in a realistic situation, which will result in a limitation in solving the complete set of maxwell's equations. In this paper, PWB method based on statistical theory and topological modeling with appropriate zoning concepts are introduced for the EM analysis of an electrically large complex structures.

Self-Incompatibility and Embryo Development in Astragali Radix (황기 자가불화합성과 배 발달)

  • Kim, Young-Guk;Yu, Hong-Seob;Seong, Nak-Sul;Park, Ho-Ki;Son, Seok-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.5
    • /
    • pp.287-293
    • /
    • 2008
  • This study was conducted to determine the characteristics of fertilization process and embryo development of Astragalus membranaceus Bunge (Astragali Radix) to provide basic data needed in its breeding. A. membranaceus showed poor seed setting when self-pollination was induced. When artificial pollination was induced, it showed less than 5% bearing in late August, but more than 13% bearing from the beginning of September 4th. The flower size was about $17.0\;mm{\times}4.0\;mm$ and pistils and stamens had the same length of 15.0mm at flowering stage. When self-pollination or cross-pollination was induced, pollen tubes extended to an ovule. While pollen tube was extending to the ovule, reproductive cell split and formed two male generative nuclei and a vegetative nucleus. In the case of self-pollination, fertilized embryo was not observed, but was formed in the case of cross-pollination. A. membranaceus is noted to have zygote self-incompatibility. In the case of cross-pollination, fertilization was observed in 6 to 8 h after pollination, where apical cell derivatives split after fertilization. A spherical pro-embryo was then formed three days after fertilization. The seed attained full shape with a seed coat showing its distinctive contour 15 days after fertilization. Thus, A. membranaceus in Leguminosae family is found to have zygote selfincompatibility although its flower shape is shown to match the self-compatibility plant.

The effects of time ratios and shapes in battery indicator of mobile devices on users time perceptions (배터리 표시의 모양 및 시간 비율이 사용자 체감시간에 미치는 효과)

  • Kim, Huhn
    • Journal of the HCI Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.27-33
    • /
    • 2011
  • The battery lifetime is one of the most important factors in product qualities of mobile devices such as mobile phones, MP3 players, PMP. It is used to be displayed by a 'battery bar' icon with uniformly divided three or four blocks. However, several manufacturers of mobile phones have assigned uneven time ratios to each battery block because they believe that it can make users feel more long in battery lifetime. In this study, two experiments were performed. The first is to verify the effects of the uneven time ratios in each battery block on users' cognitive awareness of battery lifetime. The second is to investigate whether the compatibility between battery displays and actual time ratios affects the users' time perceptions. The results show that as low battery bar is maintained for a long time, users tend to be aware of the battery lifetime shorter. On the contrary, maintaining full battery status longer does not affect the users' time perception. These results can be applied as the guidelines for determining proper time ratios in designing the battery bar indicator of mobile devices.

  • PDF

Shear behavior and shear capacity prediction of precast concrete-encased steel beams

  • Yu, Yunlong;Yang, Yong;Xue, Yicong;Liu, Yaping
    • Steel and Composite Structures
    • /
    • v.36 no.3
    • /
    • pp.261-272
    • /
    • 2020
  • A novel precast concrete-encased steel composite beam, which can be abbreviated as PCES beam, is introduced in this paper. In order to investigate the shear behavior of this PCES beam, a test of eight full-scale PCES beam specimens was carried out, in which the specimens were subjected to positive bending moment or negative bending moment, respectively. The factors which affected the shear behavior, such as the shear span-to-depth aspect ratio and the existence of concrete flange, were taken into account. During the test, the load-deflection curves of the test specimens were recorded, while the crack propagation patterns together with the failure patterns were observed as well. From the test results, it could be concluded that the tested PCES beams could all exhibit ductile shear behavior, and the innovative shear connectors between the precast concrete and cast-in-place concrete, namely the precast concrete transverse diaphragms, were verified to be effective. Then, based on the shear deformation compatibility, a theoretical model for predicting the shear capacity of the proposed PCES beams was put forward and verified to be valid with the good agreement of the shear capacities calculated using the proposed method and those from the experiments. Finally, in order to facilitate the preliminary design in practical applications, a simplified calculation method for predicting the shear capacity of the proposed PCES beams was also put forward and validated using available test results.

Effective Stiffness of Composite Beams Considering Shear Slip Effects (전단슬립 효과를 고려한 합성보의 유효강성)

  • Heo, Byung Wook;Bae, Kyu Woong;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.671-682
    • /
    • 2004
  • This study investigated the effects of a shear slip on the deflection of steel-concretecomposite beams with partial shear interaction. Under the guidance of various current design codes, this deflection was related to the strength of shear connectors in the composite beams. In this paper, a shear connector stiffness based on exact solutions, regardless of loading conditions, was developed. The equivalent rigidity of composite beams that considered three different loading types was first derived, based on equilibrium and curvature compatibility, from which a general formula accounting for slips was developed. To validate this approach, the predicted maximum deflection under the proposed method was compared against currently used equations to calculate beam effective stiffness (AISC)Nie's equations, which have recently been proposed. For typical beams that were used in practice, shear slips might result in stiffness reduction of up to 18% for short-span beams. For full composite sections, the effective section modulus with the AISC specifications was larger than that of the present study, which meant that the specifications were not conservative. For partial composite sections, the AISC predictions were more conservative than those in the present study.