• 제목/요약/키워드: Full Automation

검색결과 151건 처리시간 0.025초

$CO_2$ 자동용접의 공정변수와 표면 비드폭의 상관관계에 관한 민감도 분석 (Sensitivity Analysis to Relationship Between Process Parameter and Top-bead with in an Automatic $CO_2$ Welding)

  • 서주환;김일수;김인주;손준식;김학형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1845-1848
    • /
    • 2005
  • The automatic $CO_2$ welding is a manufacturing process to produce high quality joints for metal and it could provide a capability of full automation to enhance productivity. Despite the widespread use in the various manufacturing industries, the full automation of the robotic $CO_2$ welding has not yet been achieved partly because the mathematical model for the process parameters of a given welding task is not fully understood and quantified. Several mathematical models to control welding quality, productivity, microstructure and weld properties in arc welding processes have been studied. However, it is not an easy task to apply them to the various practical situations because the relationship between the process parameters and the bead geometry is non-linear and also they are usually dependent on the specific experimental results. Practically, it is difficult, but important to know how to establish a mathematical model that can predict the result of the actual welding process and how to select the optimum welding condition under a certain constraint. In this research, an attempt has been made to develop an intelligent algorithm to predict the weld geometry (top-bead width, top-bead height, back-bead width and back-bead height) as a function of key process parameters in the robotic $CO_2$welding. A sensitivity analysis has been conducted and compared the relative impact of three process parameters on bead geometry in order to verify the measurement errors on the values of the uncertainty in estimated parameters.

  • PDF

다구찌 방법을 이용한 $CO_2$ 자동용접의 공정변수 분석 (An Analysis for Process Parameters in the Automatic $CO_2$ Welding Using the Taguchi Method)

  • 김인주;박창언;김일수;성백섭;손준식;유관종;김학형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.596-599
    • /
    • 2004
  • The robotic $CO_2$ welding is a manufacturing process to produce high quality joints for metal and it could provide a capability of full automation to enhance productivity. Despite the widespread use in the various manufacturing industries, the full automation of the robotic $CO_2$ welding has not yet been achieved partly because the mathematical model for the process parameters of a given welding task is not fully understood and quantified. Several mathematical models to control welding quality, productivity, microstructure and weld properties in arc welding processes have been studied. However, it is not an easy task to apply them to the various practical situations because the relationship between the process parameters and the bead geometry is non-linear and also they are usually dependent on the specific experimental results. Practically, it is difficult, but important to know how to establish a mathematical model that can predict the result of the actual welding process and how to select the optimum welding condition under a certain constraint. In this research, an attempt has been made to develop an intelligent algorithm to predict the weld geometry (top-bead width, top-bead height, back-bead width and back-bead height) as a function of key process parameters in the robotic $CO_2$welding. To achieve this above objective, Taguchi method was employed using five different process parameters (tip gap, gas flow rate, welding speed, arc current, welding voltage) as a guide for optimization of process parameters.

  • PDF

차세대 웨이퍼 생산시스템에서의 실시간 스케줄링 시스템 아키텍처 (A Real-Time Scheduling System Architecture in Next Generation Wafer Production System)

  • 이현;허선;박유진;이건우;조용주
    • 산업경영시스템학회지
    • /
    • 제33권3호
    • /
    • pp.184-191
    • /
    • 2010
  • In the environment of 450mm wafers production known as the next-generation semiconductor production process, one of the most significant features is the full automation over the whole manufacturing processes involved. The full automation system for 450mm wafer production will minimize the human workers' involvement in the manufacturing process as much as possible. In addition, since the importance of an individual wafer processing increases noticeably, it is necessary to develop more robust scheduling systems in the whole manufacturing process than so ever. The scheduling systems for the next-generation semiconductor production processes also should be capable of monitoring individual wafers and collecting useful data on them in real time. Based on the information gathered from these processes, the system should finally have a real-time scheduling functions controlling whole the semiconductor manufacturing processes. In this study, preliminary investigations on the requirements and needed functions for constructing the real time scheduling system and transforming manufacturing environments for 300mm wafers to those of 400mm are conducted and through which the next generation semiconductor processes for efficient scheduling in a clustered production system architecture of the scheduler is proposed. Our scheduling architecture is composed of the modules for real-time scheduling, the clustered production type supporting, the optimal scheduling and so on. The specifications of modules to define the major required functions, capabilities, and the relationship between them are presented.

Effects of electroslag remelting process and Y on the inclusions and mechanical properties of the CLAM steel

  • Qiu, Guoxing;Zhan, Dongping;Li, Changsheng;Yang, Yongkun;Jiang, Zhouhua;Zhang, Huishu
    • Nuclear Engineering and Technology
    • /
    • 제52권4호
    • /
    • pp.811-818
    • /
    • 2020
  • Y-containing CLAM steels were melted via vacuum induction melting and electroslag remelting. In this study, the evolution, microstructure, and mechanical properties of the alloy inclusions (ESR-1 (0 wt.% Y), ESR-2 (0.016 wt.% Y) and ESR-3 (0.042 wt.% Y)) were investigated. Further, the number of inclusions in ESRed steel was observed to obviously decrease, and the distributions were more uniform. The fine Y-Al-O inclusions (1-2 ㎛) were the main inclusions in ESR-2. The addition of Y affected the prior austenite grain size (PAGZ), increasing the tensile strength at test temperature. Low ductile-brittle transition temperature (DBTT) was obtained because of the fine PAGZ and dispersive inclusions. For the ESRed CLAM steel with 0.016 wt.% Y, the yield strengths were 621 MPa at 20 ℃ and 354 MPa at 600 ℃ in air. Further, the uniform elongation and elongation of the ESR-2 alloy were 5.5% and 20.1% at 20 ℃, respectively. Meanwhile, the DBTT tested using full-size Charpy impact specimen (55 cm × 10 cm × 10 cm) was reduced to -83 ℃.

Hygrothermal Fracture Analysis in Dissimilar Materials

  • Ahn, Kook-Chan;Lee, Tae-Hwan;Bae, Kang-Yul
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제2권2호
    • /
    • pp.65-72
    • /
    • 2001
  • This paper demonstrates an explicit-implicit, finite element analysis for linear as well as nonlinear hygrothermal stress problems. Additional features, such as moisture diffusion equation, crack element and virtual crack extension(VCE) method for evaluating J-integral are implemented in this program. The Linear Elastic Fracture Mechanics(LEFM) Theory is employed to estimate the crack driving force under the transient condition for an existing crack. Pores in materials are assumed to be saturated with moisture in the liquid form at the room temperature, which may vaporize as the temperature increases. The vaporization effects on the crack driving force are also studied. The ideal gas equation is employed to estimate the thermodynamic pressure due to vaporization at each time step after solving basic nodal values. A set of field equations governing the time dependent response of porous media are derived from balance laws based on the mixture theory. Darcy's law is assumed for the fluid flow through the porous media. Perzyna's viscoplastic model incorporating the Von-Mises yield criterion are implemented. The Green-Naghdi stress rate is used for the invariant of stress tensor under superposed rigid body motion. Isotropic elements are used for the spatial discretization and an iterative scheme based on the full Newton-Raphson method is used for solving the nonlinear governing equations.

  • PDF

휴대폰 카메라용 비구면렌즈 사출성형의 수치해석 (Numerical analysis of injection molding of aspheric lenses for a mobile phone camera module)

  • 박근;엄혜주
    • 한국금형공학회:학술대회논문집
    • /
    • 한국금형공학회 2008년도 하계 학술대회
    • /
    • pp.143-148
    • /
    • 2008
  • In order to produce high-quality optical components, aspheric lenses have been widely applied in recent years. An aspheric lens consists of aspheric surfaces instead of spherical ones, which causes difficulty in the design process as well as the manufacturing procedure. Although injection molding is widely used to fabricate optical lenses owing to its high productivity, there remains lots of difficulty to determine appropriate mold design factors and injection molding parameters. In the injection molding fields, computer simulation has been effectively applied to analyze processes based on the shell analysis so far. Considering the geometry of optical lenses, a full-3d simulation based on solid elements has been reported as a reliable approach. The present work covers three-dimensional injection molding simulation and relevant deformation analysis of an injection molded plastic lens based on 3d solid elements. Numerical analyses have been applied to the injection molding processes of three aspheric lenses for an image sensing module of a mobile phone. The reliability of the proposed approach has been verified in comparison with the experimental results.

  • PDF

아날로그 제약 조건을 고려한 집적회로의 레이아웃 자동화 (Layout Automation of Integrated Circuits Based on Analog Constraints)

  • 조현상;김영수;오정환;윤광섭;한창호
    • 한국정보처리학회논문지
    • /
    • 제4권8호
    • /
    • pp.2120-2132
    • /
    • 1997
  • 아날로그 집적회로 설계 자동화를 위한 레이아웃 자동화 도구를 제안하였다. 구현된 시스템은 완전 주문형 방식을 채택하고 아날로그 레이아웃의 제약 조건을 고려하였다. 기존의 아날로그 레이아웃 자동화 도구들이 가지고 있는 단점을 보완하기 위하여 변수화된 모듈 라이브러리를 개발, 복잡한 아날로그 모듈들의 레이아웃을 지원하여 확장성을 극대화하였다. 또한 배선 과정에는 기존의 디크스트라 알고리즘을 개선한 종적 다중 경로 알고리즘을 적용하였다. 구현된 아날로그 레이아웃 자동화 도구는 비교기, 연산증폭기 그리고 필터등의 시험회로를 대상으로 시험 수행하였다. 기존의 자동화 도구인 OPASYN과 비교하여 웰 합병과 인터디지트형의 모듈로 레이아웃이 수행된 결과를 얻을 수 있었다.

  • PDF

Automated CFD analysis for multiple directions of wind flow over terrain

  • Morvan, Herve P.;Stangroom, Paul;Wright, Nigel G.
    • Wind and Structures
    • /
    • 제10권2호
    • /
    • pp.99-119
    • /
    • 2007
  • Estimations of wind flow over terrain are often needed for applications such as pollutant dispersion, transport safety or wind farm location. Whilst field studies offer very detailed information regarding the wind potential over a small region, the cost of instrumenting a natural fetch alone is prohibitive. Wind tunnels offer one alternative although wind tunnel simulations can suffer from scale effects and high costs as well. Computational Fluid Dynamics (CFD) offers a second alternative which is increasingly seen as a viable one by wind engineers. There are two issues associated with CFD however, that of accuracy of the predictions and set-up and simulation times. This paper aims to address the two issues by demonstrating, by way of an investigation of wind potential for the Askervein Hill, that a good level of accuracy can be obtained with CFD (10% for the speed up ratio) and that it is possible to automate the simulations in order to compute a full wind rose efficiently. The paper shows how a combination of script and session files can be written to drive and automate CFD simulations based on commercial software. It proposes a general methodology for the automation of CFD applied to the computation of wind flow over a region of interest.

Cutting-edge Technologies to Achieve a Higher Level of Modular Construction - Literature Review

  • Lee, Seungtaek;Choi, Jin Ouk;Song, Seung
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.536-542
    • /
    • 2022
  • Cost overruns, schedule delays, and a shortage of skilled labor are common problems the construction industry is currently experiencing. Modularization and standardization strategies have the potential to resolve the various problems mentioned above and have been applied for various construction applications for a long time. However, the level of modularization remains low, and modular construction projects have not been getting the full benefits. Thus, this review investigated the cutting-edge technologies currently being utilized to develop the modular construction field. For this paper, qualified research papers were identified using predetermined keywords from previous related research papers. Identified literature was then filtered and analyzed. According to the included reviews, several technologies are being developed for modular construction. For example, automated design and monitoring systems for modularization were developed. In addition, research labs are utilizing robotic arms for modular construction to achieve a high level of completion in the construction industry, as is seen in the manufacturing industry. Despite these efforts, more research and development are necessary because some automation technologies still require manual activities. Thus, there is great potential for further development of modularization techniques, and further research is recommended to achieve high levels of modularization.

  • PDF

시공 자동화 시스템에 적합한 부재 디자인 프로세스 개발 (Development of Component Design Process for Automated Construction System)

  • 진일권;신윤석;조훈희;강경인
    • 한국건설관리학회논문집
    • /
    • 제10권4호
    • /
    • pp.76-86
    • /
    • 2009
  • 최근 건설현장에서는 기능인력 수급의 어려움과 숙련공의 노령화의 해법으로 건설 자동화가 추진되고 있다. 현재 국내 건설자동화 연구수준은 작업 단위의 로봇을 통한 부분 자동화의 단계를 넘어 완전한 자동화로 건설할 수 있는 시스템 개발의 단계에 접어들고 있다. 하지만 완전한 건설 장비를 갖춘 자동화 시공 시스템일지라도 시공자의 유연성을 완전히 모방하기 어렵고, 부재 종류의 다양한 변화에 빨리 대처할 수 있는 능력이 부족하다. 따라서 자동화 시공 시스템의 작업 능력을 향상시킬 수 있고, 자동화된 시공 작업에 쉽게 접근할 수 있는 방법 중의 한 가지는 자동화 시공하기에 쉬운 부재를 설계해 주는 것이다. 따라서, 본 연구에서는 자동화 시공 시스템에 적합한 부재를 설계하기 위하여 품질기능전개(QFD)기법을 적용한 디자인 개발 프로세스를 제시하였다. 이를 통해 시공 자동화 시스템의 효율성을 향상시켜 건설자동화 기술 발전에 기여하고자 한다.