Browse > Article
http://dx.doi.org/10.1016/j.net.2019.10.001

Effects of electroslag remelting process and Y on the inclusions and mechanical properties of the CLAM steel  

Qiu, Guoxing (State Key Laboratory of Rolling and Automation, Northeastern University)
Zhan, Dongping (School of Metallurgy, Northeastern University)
Li, Changsheng (State Key Laboratory of Rolling and Automation, Northeastern University)
Yang, Yongkun (School of Metallurgy, Northeastern University)
Jiang, Zhouhua (School of Metallurgy, Northeastern University)
Zhang, Huishu (School of Metallurgy Engineering, Liaoning Institute of Science and Technology)
Publication Information
Nuclear Engineering and Technology / v.52, no.4, 2020 , pp. 811-818 More about this Journal
Abstract
Y-containing CLAM steels were melted via vacuum induction melting and electroslag remelting. In this study, the evolution, microstructure, and mechanical properties of the alloy inclusions (ESR-1 (0 wt.% Y), ESR-2 (0.016 wt.% Y) and ESR-3 (0.042 wt.% Y)) were investigated. Further, the number of inclusions in ESRed steel was observed to obviously decrease, and the distributions were more uniform. The fine Y-Al-O inclusions (1-2 ㎛) were the main inclusions in ESR-2. The addition of Y affected the prior austenite grain size (PAGZ), increasing the tensile strength at test temperature. Low ductile-brittle transition temperature (DBTT) was obtained because of the fine PAGZ and dispersive inclusions. For the ESRed CLAM steel with 0.016 wt.% Y, the yield strengths were 621 MPa at 20 ℃ and 354 MPa at 600 ℃ in air. Further, the uniform elongation and elongation of the ESR-2 alloy were 5.5% and 20.1% at 20 ℃, respectively. Meanwhile, the DBTT tested using full-size Charpy impact specimen (55 cm × 10 cm × 10 cm) was reduced to -83 ℃.
Keywords
CLAM; Yttrium; Inclusion; Electroslag remelting; Mechanical properties;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 W. Zh Mu, P. Hedstr€om, H. Shibata, P.G. J€onsson, K. Nakajima, High-temperature confocal laser scanning microscopy studies of ferrite formation in inclusion-engineered steels: a review, JOM (J. Occup. Med.) 70 (10) (2018) 2283-2295.
2 F. Pan, J. Zhang, H.L. Chen, Y.H. Su, C.L. Kuo, Y.H. Su, S.H. Chen, K.J. Lin, P.H. Hsieh, W.S. Hwang, Effects of rare earth metals on steel microstructures, Materials 9 (6) (2017) 1-19.
3 P. Bate, The effect of deformation on grain growth in Zener pinned systems, Acta Mater. 49 (8) (2001) 1453-1461.   DOI
4 M.E. Alam, S. Pal, S.A. Maloy, G.R. Odette, On delamination toughening of a 14YWT nanostructured ferritic alloy, Acta Mater. 136 (2017) 61-73.   DOI
5 Y.Y. Zhu, F.R. Wan, J. Gao, W.T. Han, Y.N. Huang, Sh N. Jiang, J. Sh Qiao, F. Zhao, Sh W. Yang, S. Ohnuki, N. Hashimoto, Mechanical property and irradiation damage of China Low Activation Martensitic (CLAM) steel, Sci. China Ser. G Phys. Mech. Astron. 55 (11) (2012) 2057-2061.   DOI
6 Y.F. Li, Q.Y. Huang, Y.C. Wu, Y.N. Zheng, Y. Zuo, Sh Y. Zhu, Effects of addition of yttrium on properties and microstructure for China Low Activation Martensitic (CLAM) steel, Fusion Eng. Des. 82 (15-24) (2007) 2683-2688.   DOI
7 W. Yan, P. Hu, W. Wang, L.J. Zhao, Y.Y. Shan, K. Yang, Effect of yttrium on mechanical properties of 9Cr-2WVTa low active martensite steel, Chin. J. Nucl. Sci. Eng. 29 (1) (2009) 50-55.
8 Y.P. Zhang, D.P. Zhan, X.W. Qi, Zh H. Jiang, H. Sh Zhang, Effect of the combined addition of Y and Ti on the second phase and mechanical properties of China low-activation martensitic steel, J. Mater. Eng. Perform. 27 (5) (2018) 2239-2246.   DOI
9 G.X. Qiu, D.P. Zhan, Ch Sh Li, M. Qi, Zh H. Jiang, H. Sh Zhang, Effects of yttrium on microstructure and properties of reduced activation ferritic-martensitic steel, Mater. Sci. Technol. 34 (16) (2018) 2018-2029.   DOI
10 D. Kim, K. Park, Effect of electro-slag remelting process on low cycle fatigue property of reduced activation ferritic/martensitic steels, New. Renew. Energ. 11 (2015) 62-70.   DOI
11 A. Sawahata, H. Tanigawa, M. Enomoto, Effects of electro slag remelting on inclusion formation and impact property of reduced activation ferritic/ martensitic steels, J. Jpn. Inst. Metals 72 (2008) 176-180.   DOI
12 H. Tanigawa, A. Sawahata, M.A. Sokolov, M. Enomoto, R.L. Klueh, A. Kohyama, Effects of inclusions on fracture toughness of reduced-activation ferritic/ martensitic F82H-IEA steels, Mater. Trans. 48 (2007) 570-573.   DOI
13 Sh J. Liu, Q.Y. Huang, Ch J. Li, B. Huang, Influence of non-metal inclusions on mechanical properties of CLAM steel, Fusion Eng. Des. 84 (7-11) (2009) 1214-1218.   DOI
14 Z.X. Xia, C. Zhang, H. Lan, Z.G. Yang, P.H. Wang, J.M. Chen, Z.Y. Xu, X.W. Li, S. Liu, Influence of smelting processes on precipitation behaviors and mechanical properties of low activation ferrite steels, Mater. Sci. Eng. A 528 (2) (2010) 657-662.   DOI
15 H. Sakasegawa, H. Tanigawa, S. Kano, H. Abe, Material properties of the F82H melted in an electric arc furnace, Fusion Eng. Des. 98-99 (2015) 2068-2071.   DOI
16 G.X. Qiu, D.P. Zhan, Ch Sh Li, M. Qi, Zh H. Jiang, H. Sh Zhang, Effect of Y/Zr ratio on inclusions and mechanical properties of 9Cr-RAFM steel fabricated by vacuum melting, J. Mater. Eng. Perform. 28 (2) (2019) 1067-1076.   DOI
17 W. Zh Mu, P.G. J€onsson, K. Nakajima, Recent aspects on the effect of inclusion characteristics on the intragranular ferrite formation in low alloy steels: a review, High Temp. Mater. Process. 36 (4) (2017) 309-325.   DOI
18 W. Zh Mu, N. Dogan, K.S. Coley, In situ observations of agglomeration of nonmetallic inclusions at steel/Ar and steel/slag interfaces by high-temperature confocal laser scanning microscope: a review, JOM (J. Occup. Med.) 70 (7) (2018) 1199-1209.
19 H. T, X. Xi, P. Chen, H. Li, X. Z, B. Yuan, F. Xu, J. Liu, Effects of inclusions in Zrdoped steels on low temperature toughness, Iron Steel 39 (12) (2004) 60-63.   DOI
20 P. Song, D. Morrall, Zh X. Zhang, K. Yabuuchi, A. Kimura, Radiation responses of ODS ferritic steels with different oxide particles under ion-irradiation at $550^{\circ}C$, J. Nucl. Mater. 502 (2018) 76-85.   DOI
21 S. Morioka, H. Suito, Effect of oxide particles on ${\delta}/{\gamma}$ transformation and austenite grain growth in Fe-0.05-0.30%C-1.0%Mn-1.0%Ni alloy, ISIJ Int. 48 (3) (2008) 286-293.   DOI
22 Y.B. Chun, S.H. Kang, D.W. Lee, S. Choc, Y.H. Jeong, A. Zywczak, C.K. Rhee, Development of Zr-containing advanced reduced-activation alloy (ARAA) as structural material for fusion reactors, Fusion Eng. Des. 109-111 (2016) 629-633.   DOI
23 Q.Y. Huang, C.J. Li, Y.F. Li, Sh J. Liu, Y.C. Wu, J.G. Li, F.R. Wan, X. Ju, Y.Y. Shan, J.N. Yu, Sh Y. Zhu, P.Y. Zhang, J.F. Yang, F. Sh Han, M.G. Kong, H.Q. Li, T. Muroga, T. Nagasaka, R&D status of China low activation martensitic steel, Chin. J. Nucl. Sci. Eng. 27 (1) (2007) 41-46.   DOI
24 Sh H. Chen, L.J. Rong, Effect of silicon on the microstructure and mechanical properties of reduced activation ferritic/martensitic steel, J. Nucl. Mater. 459 (2015) 13-19.   DOI
25 S. Kano, H. Yang, J.J. Shen, Z. Sh Zhao, J. McGrady, D. Hamaguchi, M. Ando, H. Tanigawa, H. Abe, Investigation of instability of $M_{23}C_6$, particles in F82H steel under electron and ion irradiation conditions, J. Nucl. Mater. 502 (2018) 263-269.   DOI
26 P. Strom, P. Petersson, R.A. Parra, M. Oberkofler, T.S. Selinger, D. Primetzhofer, Sputtering of polished EUROFER97 steel: surface structure modification and enrichment with tungsten and tantalum, J. Nucl. Mater. 508 (2018) 139-146.   DOI
27 L. Tan, Y. Yang, J.T. Busby, Effects of alloying elements and thermomechanical treatment on 9Cr Reduced Activation FerriticeMartensitic (RAFM) steels, J. Nucl. Mater. 442 (1-3) (2013) S13-S17.   DOI
28 J.G. Chen, Y. Ch Liu, Y.T. Xiao, Y.H. Liu, Ch X. Liu, H.J. Li, Improvement of hightemperature mechanical properties of low-carbon RAFM steel by MX precipitates, Acta Metall. Sin. 31 (7) (2018) 1-7.   DOI
29 X.J. Jin, Sh H. Chen, L.J. Rong, Effects of Mn on the mechanical properties and high temperature oxidation of 9Cr2WVTa steel, J. Nucl. Mater. 494 (2017) 103-113.   DOI
30 A.V. Panin, M.V. Leontyeva-Smirnova, V.M. Chernov, V.E. Panin, Yu I. Pochivalov, E.A. Melnikova, Strength enhancement of structural steel EK-181 based on the multilevel approach of physical mesomechanics, Phys. Mesomech. 11 (1-2) (2008) 85-96.   DOI
31 S.V. Rogozhkin, V.S. Ageev, A.A. Aleev, A.G. Zaluzhnyi, M.V. Leont'eva-Smirnova, A.A. Nikitin, Tomographic atom-probe analysis of temperature-resistant 12%-chromium ferritic-martensitic steel EK-181, Phys. Met. Metallogr. 108 (6) (2009) 579-585.   DOI
32 P. Liu, Y.T. Song, X.B. Peng, Sh J. Qin, X. Mao, X.Y. Qian, J.W. Zhang, Conceptual design study for CFETR divertor target using CLAM steel as structural material, Fusion Eng. Des. 131 (2018) 90-95.   DOI
33 G. Xu, X.L. Gan, G.J. Ma, F. Luo, H. Zou, The development of Ti-alloyed high strength microalloy steel, Mater. Des. 31 (6) (2010) 2891-2896.   DOI
34 Y.F. Li, Q.Y. Huang, Y.C. Wu, Study on impact and tensile properties of CLAM steel, Nucl. Phys. Rev. 23 (2) (2006) 151-154.   DOI
35 M.E. Alam, S. Pal, S.A. Maloy, G.R. Odette, On delamination toughening of a 14YWT nanostructured ferritic alloy, Acta Mater. 136 (2017) 61-73.   DOI