• Title/Summary/Keyword: Fuel supply system

검색결과 599건 처리시간 0.027초

가스발생기의 연료과잉가스 후연소용 O2/CH4 가스 공급시스템 설계 (Modeling and Simulation of O2/CH4 Gas Supply System of Afterburner for Fuel-rich Gas of Gas Generator)

  • 왕승원;이광진;정용갑;한영민
    • 한국추진공학회지
    • /
    • 제18권2호
    • /
    • pp.86-92
    • /
    • 2014
  • 나로우주센터에 구축되는 연소기 연소시험설비(CCTF)에는 한국형발사체(KSLV-II)에 적용된 터보펌프식 엔진의 가스발생기 시험시 생성되는 연료과잉가스를 연소시키기 위한 후연소시스템이 포함되어 있다. 후연소시스템은 $O_2$$CH_4$ 가스를 공급받아 연료과잉가스를 소모시킨다. 본 연구는 연소기 연소시험설비의 상세설계 자료를 바탕으로 후연소시스템의 가스공급시스템에 대해 AMESim 상용프로그램을 이용하여 해석하였다. 그 결과 상세설계에 적용된 레귤레이터, 공급배관, 오리피스크기 등으로 가스사용량을 예측하고, 상세설계의 타당성을 검증하였다.

공리적 접근을 이용한 자동차 경량화 설계 - 통합 흡기시스템의 개발(I) (Weight Reduction in automobile Design Through Axiomatic Approach -Developed of Integrated Air Fuel Module(I)-)

  • 문용락;차성운;윤풍영
    • 한국자동차공학회논문집
    • /
    • 제7권6호
    • /
    • pp.106-114
    • /
    • 1999
  • Today, one of the most important objective in automobile development is to reduce the weight of automobile . The eventual depletion of petroleum and environmental regulations brought considerable emphasis to this area on increasing fuel efficiency. Conventional intake air-fuel system is very heavy because it is composed of numerous parts. The bulky size caused increase in the amount of metal being used to build automobile chassis and this became a serious weight problem. The size also caused difficulties in optimization of fuel supply system which in turn decreased engine efficiency. Currently , there are efforts to integrate several intake system modules into one. The purpose of this paper is to evaluate the directions of such development.

  • PDF

고분자 전해질형 연료전지 자동차의 급기 시스템의 동적 모델링 및 분석 (Dyamic Modeling and Analysis of Air Supply System for Vehicular PEM Fuel Cell)

  • 장현탁
    • 한국수소및신에너지학회논문집
    • /
    • 제15권3호
    • /
    • pp.175-186
    • /
    • 2004
  • In this paper, we developed the dynamic model of a fuel cell system suitable for controller design and system operation. The transient phenomena captured in the model include the flow characteristics and inertia dynamics of the compressor, the intake manifold filling dynamics, oxygen partial pressures and membrane humidity on the fuel cell voltage. In the simulations, we paid attention to the transient behavior of stack voltage and compressor pressure, stoichiometric ratio. Simulation results are presented to demonstrate the model capability. For load current following, stack voltage dynamic characteristics are plotted to understand the Electro-chemistry involved with the fuel cell system. Compressor pressure and stoichiometric ratio are strongly coupled, and independent parameters may interfere with each other, dynamic response, undershoot and overshoot.

연료전지기반 공동주택 에너지시스템 분석모델에 관한 기초연구 (A Preliminary Study on the Analysis Model of Energy System based on Fuel Cell for Apartment Houses)

  • 이홍철;황인주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.396-401
    • /
    • 2003
  • In the present study, preliminary investigation were carried out by analysis of energy system(heat and electricity) based on phosphoric acid fuel-cell of 50 kW for eco-apartment houses. Analysis model were consisted of fuel cell energy system, secondary energy unit and residential building of 5 stories with 20 and 40 households. And the investigation results reviewed under load pattern of heat and electric power of the apartment houses. The results showed mismatch between the needed heat load pattern and output of fuel cell energy system. The mismatch rate were assessed about 10-180% of heat load for apartment houses with season. We found that secondary energy unit are needed in order to supply insufficient heat.

  • PDF

LPG 및 Gasoline 겸용 차량의 엔진 점화시기 변환 제어시스템 개발 (The Development of the Ignition Spark Timing Conversion System for LPG/Gasoline Bi-fuel Vehicle)

  • 전봉준;양인권;김재국;김성준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권1호
    • /
    • pp.117-123
    • /
    • 2003
  • In a bi-fuel engine using gasoline and LPG fuel, with the current ignition timing for gasoline being used, the effective performance could not be taken in LPG fuel supply mode. The ignition timing in LPG fuel mode must be advanced much more than that of gasoline mode for the compensation of its lower flame speed, due to engine torque drop. This study aims to develop the control system for ignition spark timing conversion which is composed of hardwares and control algorithm for gasoline/LPG engine. We propose the control system which can advance the ignition spark timing in LPG fuel mode more than used in gasoline fuel mode. The advance of ignition timing is achieved by change of the ignition dwell time of coil igniter. The engine torque and F/E(Fuel-Economy) in LPG fuel mode are measured to evaluate the difference of engine performance between before and alter changing ignition spark timings. The engine torque and F/E are increased respectively, which proves the developed control system is effective so much for gasoline and LPG bi-fuel engine.

이중연료엔진의 연료가스공급시스템에 대한 안전무결도 기반 안전계장시스템 설계 (SIS Design for Fuel Gas Supply System of Dual Fuel Engine based on Safety Integrity Level(SIL))

  • 강낙원;박재홍;정정호;나성
    • 대한조선학회논문집
    • /
    • 제49권6호
    • /
    • pp.447-460
    • /
    • 2012
  • In this study, the shutdown system of the fuel gas supply system is designed based on the Safety Integrity Level of IEC 61508 and IEC 61511. First of all, the individual risk($10^{-4}$/year) and the risk matrix which are the risk acceptance criteria are set up for the qualitative risk assessment such as the HAZOP study. The natural gas leakage at the gas supply pipe is identified as the highest risk among the hazards identified through the HAZOP study and as a safety instrumented function the shutdown function for leakage was defined. SIL 2 and PFD($2.5{\cdot}10^{-3}$) for the shutdown function are determined by the layer of protection analysis(LOPA). The shutdown system(SIS) carrying out the shutdown function(SIF) is verified and designed according to qualitative and quantitative requirements of IEC 61508 and IEC 61511. As a result of SIL verification and SIS conceptual design, the shutdown system is composed of two gas detectors voted 1oo2, one programmable logic solver, and two shutdown valve voted 1oo2.

전력계통에 있어서 신에너지전원(연료전지)의 최적 운용방안에 관한 연구 (A Study on the Optimal Operation of Fuel Cell in Power Systems)

  • 노대석;홍승만;이은미
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2002년도 추계학술발표논문집
    • /
    • pp.141-144
    • /
    • 2002
  • Recently, the operation of power distribution systems has become more difficult because the peak demand load is increasing continuously and the daily load factor is getting worse and worse. Also, the consideration of deregulation and global environment in electric power industry is required. In order to overcome these problems, a study on the planning and operation in distribution systems of dispersed generating sources such as fuel cell systems, photovoltaic systems and wind power systems has been performed energetically. This study presents a method for determining an optimal operation strategy of dispersed co-generating sources, especially fuel cell systems, in the case of both only electric power supply and thermal supply as well as electric power supply. In other words, the optimal operation of these sources can be determined easily by the principle of equal incremental fuel cost and the thermal merits is evaluated quantitatively through Kuhn-Tucker's optimal conditions. In order to select the optimal locations of those sources, an priority method using the comparison of total cost at the peak load time interval is also presented. The validity of the proposed algorithms is demonstrated using a model system.

고속 비행체 연료공급 및 냉각계통 예비 열설계 (Preliminary Thermal Sizing of Fuel Supply and Cooling System for High-speed Vehicles)

  • 최세영;박수용;최현경;김준태;정해승;박정배
    • 한국추진공학회지
    • /
    • 제18권1호
    • /
    • pp.97-104
    • /
    • 2014
  • 고속 비행체에 연료를 공급하고, 내/외부의 열부하를 처리하기 위한 연료공급 및 냉각계통의 예비 열설계를 수행하였다. 이를 위해 임의의 임무형상에 대한 해석모델을 구성하고 성능해석을 진행하였다. 산출된 연료소모율과 내부의 유동 상태량을 이용하여 시스템의 각부 경계조건에 대한 열부하량을 계산하고 검증하였다. 이를 연료의 흡열반응을 이용한 시스템의 냉각성능과 비교하여 설계 요구조건을 충족시키는 것을 확인하였다.

소형 고속 전자제어 연료분사 엔진 개발에 관한 연구 (Study on Development of High-Speed Small Engine Controlled by EFI (Electronic Fuel Injection))

  • 이승진;류정인;최교남;정동수
    • 에너지공학
    • /
    • 제14권3호
    • /
    • pp.173-179
    • /
    • 2005
  • 소형고속엔진에서 연료분사 시스템은 기화기시스템 보다 출력, 연료소비율, 배기가스 등에서 향상된 결과를 가져온다. 최근에 국내에서 연료분사시스템은 차량에 사용되지만 이륜차에서는 사용되지는 않는다. 엔진에서 EFI(전자식연료분사)시스템은 변화하는 회전수에 따라 ECU 에서 정확한 연료를 공급할 수 있다. 본 연구의 목적은 이륜차에 사용되는 4valve SOHC 단기통 소형엔진에서 다양한 회전수에 맞는 엔진성능과 효율을 개선하기 위해 회전수별 연료분사효과를 고찰하였다.

물혼합연료의 분사특성과 디젤연소에 미치는 영향 (Injection characteristics of emulsified fuel and effect on diesel combustion)

  • 박권하
    • 한국분무공학회지
    • /
    • 제2권1호
    • /
    • pp.29-35
    • /
    • 1997
  • Many technologies have been developed to improve diesel emissions or performance, however NOx/PM trade-off occurs because normal methods that reduce NOx emissions tend to increase PM emissions. On the other hand many measures used to control PM emissions tend to increase NOx emissions. Thus, simultaneously controlling both NOx and PM emissions has become a significant challenge for diesel engine manufacturers. As one of the measures, the technology using emulsified fuel has recently become important under the stringent emission regulations of diesel engines. This paper investigates injection characteristics of emulsified fuel and its effect on a combustion performance in a diesel engine. In order to supply emulsified fuel into injection system a mixing unit produced by Harrier is used, then the fuel mixed with water is supplied into injector directly. The spray injected is investigated with a shadowgraph photo system and injection analyzing apparatus, then applied into a diesel engine. Those results showed that the emulsified fuel has an effect on reducing both NOx and PM.

  • PDF