• Title/Summary/Keyword: Fuel pump motor

Search Result 59, Processing Time 0.033 seconds

Study on Air Blower for Air Management System (소형/고효율 고분자전해질 연료공급모듈용 Air Blower 개발에 관한 연구)

  • Choi, J.H.;Jung, I.S.;Kim, J.H.;Seo, J.M.;Hur, J.;Sung, H.G.
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.212-214
    • /
    • 2006
  • Air Management System is composed by Pump, Fan, Compressor and Blower In general their performances depend on the capability of the motor, power converter device and controller. Especially, it should be noticed upon designing Air Management System using for Fuel Cell System, that Pump, Fan, Compressor and Blower satisfy the condition of the high performance, high efficiency, high density and reasonable price considering the safety and Economic Efficiency. In order for this, it should be studied that which kind of Motor is the most suited for Air Management System for Fuel Cell, such as Induction Motor, Brushless DC Motor, and Switched Reluctance Motor which is widely using in industry. This paper presents the designing and manufacturing of Outer Rotor Type BLDC Motor and Driver for Air Blower of Air Management System. Experimental results from a laboratory prototype arc presented to validate the feasibility of the proposed Air Blower Motor and Driver.

  • PDF

A Study on the Energy Saving Hydraulic Control System using Variable Displacement Hydraulic Pump/Motor (가변 유압 펌프/모터를 이용한 유압 제어 시스템의 에너지 절감에 관한 연구)

  • 조용래;안경관
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.100-108
    • /
    • 2003
  • This paper proposes a flywheel hybrid vehicle to solve the energy crisis problem by the exhaustion of a fossil fuel and air pollution for the conservation of environment. The proposed flywheel hybrid vehicle is composed of an accumulator and a flywheel as the energy generation and storage component and three variable displacement hydraulic pump/motors as the energy transfer devices. Flywheel has the characteristics of high energy density and easy energy absorption and consumption. The effectiveness of the energy-saving of the proposed flywheel hybrid vehicle is verified by simulation using Matlab/simulink. First of ail, analytical modeling for the flywheel hybrid vehicle is presented and simulations are performed based on the experimental efficiency data of a variable displacement pump/motor. The results of the simulation show that the effect of energy savings is realized by the proposed hybrid vehicle in 3 different city driving patterns.

Reaction Characteristics of Rubbers and LPG fuels in LPLi Fuel Supply System (고무류 반응특성이 LPG액상공급시스템의 연료분사기 성능에 미치는 영향)

  • Kim, Chang-Up;Park, Cheol-Woong;Choi, Kyo-Nam;Kang, Kern-Yong
    • Journal of ILASS-Korea
    • /
    • v.12 no.2
    • /
    • pp.94-100
    • /
    • 2007
  • The liquid phase LPG injection (LPLi) system (the third generation technology) has been considered as one of the next generation fuel supply systems for LPG vehicles, since it has a very strong potential to accomplish the higher power, higher efficiency, and lower emission characteristics than the mixer type (the second generation technology) fuel supply system. To investigate the characteristics of LPG residue in liquid phase LPG injection system, various rubbers in LPG fuel system were reacted with LPG fuels during 3 months. The experimental results showed that the residue of a cover rubber in a fuel pump after test increased 10 times higher than that before test. Furthermore, the amount of sulfur, nitrogen species which are considered as main sources in deposit formation in the LPLi fuel injector were also found to be higher than that in original LPG fuel. And rubber properties of fuel pump cover were decreased after reaction test compared with those of the original rubber. Therefore, the rubber for fuel pump cover is not suitable for a proper material in LPLi fuel system. And these results can provide more information if a motor company shares the data of core rubber parts in field test LPLi vehicles.

  • PDF

Fuel Consuming Reduction by Power Steering System Optimization (동력 조향계 최적화에 의한 연비 개선)

  • Jo, Sok-Hyun;Nam, Kyung-Woo;Kwon, O-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.119-124
    • /
    • 2006
  • This paper deals with energy-saving effort in the hydraulic power steering system. Commonly, the hydraulic power steering systems are used for passenger cars and the reduction of pumping loss under non-steering condition is important to improve fuel economy. Experiments and simulations are performed simultaneously to examine the main factors to reduce the pumping loss-pressure loss and flow rate of the power steering systems. Fuel economy effect of the optimal design of power steering system is verified by vehicle test - more than 1% fuel consuming reduction is attained.

Qualification Test of a Main Coolant Pump for SMART Pilot (SMART 연구로 주냉각재펌프의 검증시험)

  • Park, Sang-Jin;Yoon, Eui-Soo;Oh, Hyoung-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.858-865
    • /
    • 2006
  • SMART Pilot is a multipurpose small capacity integral type reactor. Main coolant pump (MCP) of SMART Pilot is a canned-motor-type axial pump to circulate the primary coolant between nuclear fuel and steam generator in the primary system. The reactor is designed to operate under condition of $310^{\circ}C$ and 14.7MPa. Thus MCP has to be tested under same operating condition as reactor design condition to verify its performance and safety. In present wort a test apparatus to simulate real operating situations of the reactor has been designed and constructed to test MCP. And then functional tests, performance tests, and endurance tests have been carried out upon a prototype MCP. Canned motor characteristics, homologous head/torque curves, coast-down curves, NPSH curves and lift-time performance variations were obtained from the qualification test as well as hydraulic performance characteristics of MCP.

Energy Saving Hydraulic Control System using Hydraulic Pump/Motor

  • Yongrae Cho;Bumseung Oh;Kyoungkwan Ahn;Soonyong Yang;Lee, Byungryong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.66.1-66
    • /
    • 2002
  • Today it becomes a serious problem to exhaustion of a fossil fuel and air pollution by exhaust gases from road vehicles for environment preservation. To solve this problem, the developments of a hybrid vehicle have been processed for the purpose of reducing pollution and energy-savings. By the way, flywheel hybrid vehicle using variable pump/motor was proposed as one feasible hybrid system in place of hybrid vehicle system by the conventional storage battery. The proposed flywheel hybrid vehicle is composed of an accumulator or a flywheel as the energy generation and storage source and three variable hydraulic pump/motor as the energy transfer device. Flywheel has the characteristic of high...

  • PDF

Experimental Study on the Rotational Speed Measuring Condition of a Gasoline Fuel Pump for a Small-Size Engine (소형엔진용 가솔린 연료펌프의 회전수 측정 조건에 대한 실험적 연구)

  • Lee, Jun-Sun;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3184-3189
    • /
    • 2010
  • To develop gasoline engine fuel pump, it is needed to measure the rotational speed of the pump. In general, because gasoline fuel pump is submerged in the fuel tank, it is difficult to measure the rotational speed directly. Currently, there are two popular methods measuring the rotational speed. One of them is using a piezoelectric accelerometer, and the other is using a current sensor. Originally, a piezoelectric accelerometer had been applied to measure the frequency of the motor vibration. A current sensor is measuring current frequency of the commutator slot. In this study, both the piezoelectric accelerometer and the current sensor have been applied on the fuel pump to calculate the rotational speed at the same time. As a result, the current sensor delivered highly accurate rotational speed information compared with that of the piezoelectric accelerometer. Especially, low rotational speed region, the current sensor shows very robust measuring characteristics. To measure the rotational speed within 1% error, the piezoelectric accelerometer needs to be set with less then 0.5Hz datum storage interval, and the current sensor needs to be set with less then 2.0Hz datum storage interval.

A Study on the Flow Rate Performance of Plunger-Type High-Pressure Pump for Compression Ignition Engine Using DME as Fuel (DME를 연료로 하는 압축 착화 엔진 용 플런저식 고압펌프의 유량 성능 연구)

  • Jeong, Jaehee;Lee, Sejun;Yu, Donggyu;Lim, Ocktaeck
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.4
    • /
    • pp.1-8
    • /
    • 2022
  • DME, a clean fuel that is being studied as an alternative fuel for diesel engines, can reduce exhaust gas, which is the one of the crucial problems of diesel engines, and has a very high cetane number and high oxygen content. DME is a fuel has properties similar with LPG and can use the infrastructure of LPG. In this study, The target was to build a database of basic data on the mass flow rate discharged for the performance evaluation of the plunger-type high pressure pump. In this study, the mass flow rate of the DME plunger type high pressure pump was analyzed by changing the common rail pressure and the motor rotation speed. The experimental conditions were the common rail pressure was changed from 300 to 500 bar and the motor rotation speed was changed from 300 to 1000 rpm. In addition, basic mass flow data were constructed to high-pressure pumps for DME. As a result of the experiment, in both cases the mass flow rate was increased.

A Study on the Energy Saving Hydraulic System Using Constant Pressure System (정압력원을 이용한 에너지 절감 유압 시스템에 관한 연구)

  • Cho, Y.R.;Yoon, J.I.;Yoon, J.H.;Lee, M.S.;Jo, W.K.;Yoon, H.S.;Ahn, K.K.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.1
    • /
    • pp.7-12
    • /
    • 2007
  • It is strongly requested to reduce fuel consumption because of high oil price and exhaust gases of road vehicles for environmental preservation. To solve these problems, several types of hybrid vehicles have been developed. Among them, flywheel hybrid vehicle using variable displacement pump/motor was already proposed as one of the feasible hybrid systems in place of hybrid vehicle by the conventional storage battery. The proposed flywheel hybrid vehicle is to keep constant pressure of high pressure line by the control of swash plate angle of flywheel pump/motor as pressure compensator. The efficiency of the overall system depends severely on the efficiency of hydraulic pump/motor in the energy saving hydraulic control system by simulation. According to the control methods of swash plate angle of piston pump/motor, there remain several problems to be solved. In this paper, experimental setup for energy saving is fabricated and the efficiency of energy saving is investigated by experiments with respect to various experimental conditions.

  • PDF

An Experimental Study on the Energy Saving Hydraulic System using Constant Pressure System (정압력원을 이용한 에너지 절감 유압 시스템에 관한 실험적 연구)

  • Cho, Yong-Rae;Ahn, Kyoung-Kwan;Yoon, Ju-Hyeon;Lee, Min-Su;Jo, Woo-Keon;Yoon, Hong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1081-1086
    • /
    • 2007
  • It is strongly requested to reduce fuel consumption because of high oil price and exhaust gases of road vehicles for environmental preservation. To solve these problems, several types of hybrid vehicles have been developed. Among them, flywheel hybrid vehicle using variable displacement pump/motor was already proposed as one of the feasible hybrid systems in place of hybrid vehicle by the conventional storage battery. The proposed flywheel hybrid vehicle is to keep constant pressure of high pressure line by the control of swash plate angle of flywheel pump/motor as pressure compensator. The efficiency of the overall system depends severely on the efficiency of hydraulic pump/motor in the energy saving hydraulic control system by simulation. According to the control methods of swash plate angle of piston pump/motor, there remain several problems to be solved. In this paper, experimental setup for energy saving is fabricated and the efficiency of energy saving is investigated by experiments with respect to various experimental conditions.

  • PDF