• Title/Summary/Keyword: Fuel moisture

Search Result 196, Processing Time 0.031 seconds

The introduction of Engine Performance Test for Miniature Turbojet Engine considering humidity effects (습도 영향을 고려한 초소형 터보제트 엔진 성능시험 소개)

  • Lee, Bo-Hwa;Lee, Kyung-Jae;Yang, Soo-Seok;Kim, Yu-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.335-338
    • /
    • 2010
  • The moisture in the atmosphere exerts a lot of influence upon Gas turbine engine performances. There is a noticeable influence of wet air at the summer sea level, high flight mach number and low engine rpm increasingly. An altitude Engine Test Facility is used to accomplish the engine performance tests at dry air condition and wet air condition, through which engine performance results is revealed. In the result, net thrust and specific fuel consumption measured -2.826% and 1.325%, respectively at wet air condition compared to dry air condition.

  • PDF

A Numerical Study on the Effects of the Wind Velocity and Height of Grassland on the flame Spread Rate of Forest Fires (초지화재 발생시 바람의 속도 및 초본의 높이가 화염전파에 미치는 영향에 대한 수치해석적 연구)

  • Bae, Sung-Yong;Kim, Dong-Hyun;Ryou, Hong-Sun;Lee, Sung-Hyuk
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.252-257
    • /
    • 2008
  • With the rapid exuberant growth of the forest, the number and size of forest fires and the costs of wildland fires have increased. The flame spread rate of forest fires is depending on the environmental variables like the wind velocity, moisture of grassland, etc. If we know the effects of the environmental variables on the fire growth, it is useful for wildland fiIre suppression. But analysis of the spread rate of wildland fire for these effects have not been established. In this study, the effects of wind velocity and height of grassland fuel have been investigated using the WFDS which is developed at NIST for prediction of the spread of wildland fires. The results showed that the relation between the height of the fuel and the spread rate of the head fires is, and the spread rates related to the wind velocity are predicted 17% less than the experimental results of Australia. When the wind velocity is over 7.5m/s, the concentration of pyrolyzed gas phase fuel is getting low due to fast movement of pyrolyzed gas, the flame spread rate becomes slow.

Fundamental Properties of Asphalt Concrete Mixture as Using TDF Fly Ash as Mineral Filler (아스팔트 콘크리트 채움재로 TDF Fly Ash 적용에 따른 아스팔트 혼합물 기초 물성 평가)

  • Choi, Min-Ju;Kim, Hyeokjung;Kim, Yongjoo;Lee, Jaejun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.497-505
    • /
    • 2017
  • TDF (Tire derived fuel) Fly ash is an industrial by-product when scraped tire was used a fuel source at the power plant. TDF Fly ash has been classified as domestic waste at the workplace so far and has not been appropriately utilized. We conducted a fundamental physical property test of asphalt mixture to investigate the possibility of using TDF Fly ash as a mineral filler of asphalt mixture for exploring new usage strategies. TDF Fly ash meets KS F 3501 asphalt mixture mineral filler criteria. And the optimal asphalt binder amount was determined to be 4.5% by Marshall design. Mineral filler content was determined at 3% and analyzed by comparing using mineral filler as stone powder. The basic physical property test of the asphalt mixture was evaluated to the provision indicated in "Production and Construction Guidelines for Asphalt Mixture" published by the Ministry of Land, Infrastructure and Transport. In the test, Marshall stability test, dynamic immersion test, tensile strength ratio test, wheel tracking test were carried out. As a result of the experiment, Marshall stability and dynamic stability satisfied the standards, and confirmed the stability and Dynamic immersion and tensile strength ratio test that TDF Fly ash is more effective for scaling and moisture resistance than stone dust. Therefore, in this research, it is expected that multilateral utilization of TDF Fly ash, and a positive effect can be also expected.

Study on the Co-firing of Sewage Sludge to a 80 kWth-scale Pulverized Coal Combustion System (80 kWth급 미분탄 연소 시스템에서 하수슬러지 혼소시 연소 특성 연구)

  • Chae, Taeyoung;Lee, Jaewook;Lee, Youngjae;Yang, Won
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.74-80
    • /
    • 2019
  • Thermochemical treatment of sewage sludge is an energy-intensive process due to its high moisture content. To save the energy consumed during the process, the hydrothermal carbonization process for sewage sludge can be used to convert sewage sludge into clean solid fuel without pre-drying. This study is aimed to investigate co-firing characteristics of the hydrothermally carbonated sewage sludge (HCS) to a pulverized coal combustion system. The purpose of the measurement is to measure the pollutants produced during co-firing and combustion efficiency. The combustion system used in this study is a furnace with a down-firing swirl burner of a $80kW_{th}$ thermal input. Two sub-bituminous coals were used as a main fuel, and co-firing ratio of the sewage sludge was varied from 0% to 10% in a thermal basis. Experimental results show that $NO_x$ is 400 ~ 600 ppm, $SO_x$ is 600 ~ 700 ppm, and CO is less than 100 ppm. Experimental results show that stable combustion was achieved for high co-firing ratio of the HCS. Emission of $NO_x$ and $SO_x$ was decreased for higher co-firing ratio in spite of the higher nitrogen contents in the HCS. In addition, it was found that the pollutant emission is affected significantly by composition of the main fuel, regardless of the co-firing ratios.

Improvement of Acid Digestion Method by Microwave for Hazardous Heavy Metal Analysis of Solid Refuse Fuel (고형연료제품의 유해중금속 분석을 위한 마이크로파 산 분해법의 개선)

  • Yang, Won-Seok;Park, Ho-Yeun;Kang, Jun-Gu;Lee, Young-Jin;Lee, Young-Kee;Yoon, Young-Wook;Jeon, Tae-Wan
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.616-626
    • /
    • 2018
  • The quality standards of solid refuse fuel (SRF) define the values for 12 physico-chemical properties, including moisture, lower heating value, and metal compounds, according to Article 20 of the Enforcement Rules of the Act on Resource Saving and Recycling Promotion. These parameters are evaluated via various SRF Quality Test Methods, but problems related to the heavy metal content have been observed in the microwave acid digestion method. Therefore, these methods and their applicability need improvement. In this study, the appropriate testing conditions were derived by varying the parameters of microwave acid digestion, such as microwave power and pre-treatment time. The pre-treatment of SRF as a function of the microwave power revealed an incomplete decomposition of the sample at 600 W, and the heavy metal content analysis was difficult to perform under 9 mL of nitric acid and 3 mL of hydrochloric acid. The experiments with the reference materials under nitric acid at 600 W lasted 30 minutes, and 1,000 W for 20 or 30 minutes were considered optimal conditions. The results confirmed that a mixture of SRF and an acid would take about 20 minutes to reach $180^{\circ}C$, requiring at least 30 minutes of pre-treatment. The accuracy was within 30% of the standard deviation, with a precision of 70 ~ 130% of the heavy metal recovery rate. By applying these conditions to SRF, the results for each condition were not significantly different and the heavy metal standards for As, Pb, Cd, and Cr were satisfied.

Evaluation of Solidified Fuel Value of Dairy Cattle Manure Digested by Semi-Dry Anaerobic Digestion Method (젖소분뇨 반 건식 혐기소화 잔재물의 고체연료화 가능성 평가)

  • Jeong, Kwang-Hwa;Kim, Jung Kon;Lee, Dong-jun;Cho, Won-Mo;Ravindran, B.;Kwag, Jung-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.4
    • /
    • pp.95-103
    • /
    • 2016
  • The objective of this study was to investigate feasibility of semi-dry anaerobic digestion using dairy cattle manure and to evaluate solidified fuel value of semi-dry anaerobic digestate. To evaluate semi-dry anaerobic digestion using dairy cattle manure, 950 mL bottle type anaerobic reactor was set in the constant temperature room maintained at $35^{\circ}C$. To produce anaerobic digestate for making solidified fuel, acrylic cylindrical anaerobic digester(1,000 mm width ${\times}$ 450 mm height) was set in the constant room temperature to carry out batch test of semi-dry anaerobic digestion using same dairy cattle manure. Moisture content of dairy cattle manure and inoculum solution for anaerobic digestion were 80.64% and 96.83%, respectively. The dairy cattle manure and the inoculum solution was mixed by 1:1 ratio(v/v) for anaerobic digestion. Water content and VS/TS(Volatile Solids/Total Solids) of mixture of substrate and inoculum were 89.74% and 83.35%, respectively. In case of non-inoculated anaerobic digester, the biogas was not produced. By the semi-dry anaerobic digestion, the calorific value of the digestate was reduced by 20% compare to fresh dairy cattle manure. In other hand, ash content increased from 15% to 18.4%. The contents of Cr, Pb, Cd and S of pellet produced from anaerobically digested dairy cattle manure were not against the standard regulation for livestock manure solidified fuel. Therefore, it can be used as fuel that anaerobic digestate produced after semi-dry anaerobic digestion using dairy cattle manure.

Effect of Bark and Drying Waste Liquor of Larix kaempferi Used as An Additive on The Fuel Characteristics of Wood Pellet Fabricated with Rigida Pine and Quercus mongolica Sawdust (첨가제로서 낙엽송의 수피 및 건조폐액이 리기다소나무 및 신갈나무 펠릿의 연료적 특성에 미치는 영향)

  • Yang, In;Chae, Hyun-Gyu;Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.258-267
    • /
    • 2017
  • In this study, pitch pine (Pinus rigida, PIR) and Mongolian oak (Quercus mongolica, QUM) pellets were fabricated with bark or/and drying waste liquor (DWL) of larch (Larix kaempferi, LAK) as an additive. Based on the results of fuel characteristics of the pellets, optimal conditions for producing the high-quality pellets were provided. In the analysis of chemical composition, bark contained holocelluose and lignin of 90% and over. DWL had 0.1% solid assumed to sugars which are generated from the oven-drying of LAK logs. QUM showed high ash content (2.2%) by containing of bark in the sawdust. Bark and DWL of LAK had high ash content of 4% and over. Calorific values of all specimens and additives were higher than that of the $1^{st}$-grade standard of wood pellets designated by NIFOS (18.0 MJ/kg). PIR and QUM pellets were fabricated with additive of 2 wt% based on the solid weight of oven-dried sawdust using a piston-type flat-die pelletizer, and thus ash content and calorific value of the pellets did not affect by the use of additive. Durability of the pellets increased with the use of additive. Durabilties of pellets, which were fabricated with bark as an additive and DWL as a controller of moisture content for sawdust, did not differ from those of pellets without additives and were lower than those of pellets either with bark or DWL. However, use of both bark and DWL for the production of wood pellets might be favorable because it can make a profit from the collection process of DWL. Based on the results of fuel characteristics of the pellets, QUM and PIR pellets were produced by a flat-die pelletizer. Moisture content (MC), bulk density and durability of the pellets improved with the use of additive. Particularly, sawdust MC of 10% and the addition of bark or DWL for PIR as well as sawdust MC of 12% and the addition of bark for QUM might be optimal conditions for the production of high-quality pellets. Except for the ash content of QUM pellets, other properties of PIR and QUM pellets exceeded the $1^{st}$-grade wood pellets standards of NIFOS.

An Analysis of the Water Saturation Processes in the Engineered Barrier of a High Level Radioactive Waste Disposal System (고준위폐기물처분시스템 공학적 방벽에서의 지하수 포화공정 해석)

  • Park, Jeong-Hwa;Lee, Jae-Owan;Kwon, Sang-Ki
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.1
    • /
    • pp.23-32
    • /
    • 2011
  • An engineering scale test, which is called KENTEX, was carried out to understand and to analyze the coupled thermal, hydrological and mechanical phenomena in the engineered barrier system(EBS) of Korean reference disposal system. Using the experimental data obtained from KENTEX, the water saturation processes in bentonite could be analyzed. From the comparison between the model calculation using ABAQUS and the experimental results, the difference of the water content between them in the unsaturating part was large because the drying phenomena due to moisture redistribution by the temperature gradient could not be included in the model. In the saturating part, the difference of the water content between them was decreased gradually and showed to be small in the full saturation. And the time of about 95% saturation could be estimated about 500 days from the model calculation and experimental results. Also it could be known that the moisture redistribution in the unsaturated part could not be affected on the saturation time of bentonite in the repository. Therefore, it is considered that this model could be used to quantitatively predict the water saturation time in bentonite as EBS for the disposal system.

The Feasibility of Natural Ventilation in Radioactive Waste Repository Using Rock Cavern Disposal Method (동굴처분 방식을 사용하는 방사성 폐기물 처분장의 자연 환기 타당성 평가)

  • Kim Jin;Kwon Sang Ki
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.3
    • /
    • pp.183-192
    • /
    • 2005
  • Natural ventilation in radioactive waste repositories is considered to be less efficient than mechanically forced ventilation for the repository working environment and hygiene & safety of the public at large, for example, controlling the exposure of airborne radioactive particulate matter. It is, however, considered to play an important role and may be fairly efficient for maintaining environmental conditions of the repository over the duration of its lifetime, for example, moisture content and radon (Rn) gas elimination in repository. This paper describes the feasibility of using natural ventilation which can be generated in the repository itself, depending on the conditions of the natural environment during the periods of repository construction and operation. Evidences from natural cave analogues, actual measurements of natural ventilation pressures in mountain traffic tunnels with vertical shafts, and calculations of airflow rates with given natural ventilation pressures indicate possible benefits from passive ventilation for the prospective Korean radioactive waste repository. Natural ventilation may provide engineers with a cost-efficient method for heat and moisture transfer, and radon (Rn) gas elimination in a radioactive waste repository. The overall thermal performance of the repository may be improved. The dry-out period may be extended, and the seepage flux likely would be decreased.

  • PDF

SRF Conversion Potential of Biomass and Mixed Plastic Waste Generated in D City (D시 내에서 발생하는 바이오매스 및 폐플라스틱 혼합 폐기물의 SRF 전환 포텐셜 분석)

  • Yang, Han-Sol;Kim, Ki-Kwang;Lim, Chae-Wook;Hyun, Jae-Hyuk
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.3
    • /
    • pp.55-61
    • /
    • 2018
  • This study evaluated if the selected samples meets the Solid Refuse Fuel quality criteria in Korea. Biomass and plastic wastes generated in D City were mixed in diverse ratio. When the biomass content was about 40%, the moisture content was close to the SRF criteria and was measured to be 9.8%. The ash contents were analyzed up to 4.19%, and the lower calorific values based on Steuer, Dulong Equation and Bomb Calorimeter were at least 4,851, 4,181 and 3,847 kcal/kg, respectively. As a result of the elemental analysis, sulfur and chloride content were measured up to 0.05%. Those values satisfied the SRF criteria. Also, heavy metals(Hg, Cd, Pb, As) were analyzed to be below the SRF criteria. This makes it possible to use efficiently the wood byproducts abandoned in the woods, and the physical properties of wood being weak to moisture can be supplemented with plastics. Consequently, if plastic and biomass were well mixed and made into SRF, it would overcome the problem of shortening the life span of incineration facilities due to the high temperature of plastic wastes in the incinerator.