• 제목/요약/키워드: Fuel injection pressure

검색결과 708건 처리시간 0.028초

직접분사식 바이오 에탄올-가솔린 혼합연료의 연료온도에 따른 분무 특성에 관한 실험적 연구 (An Experimental Study on Spray Characteristics of Directly Injected Bio-Ethanol-Gasoline Blended Fuel By Varying Fuel Temperature)

  • 이성욱;박기영;김종민;박봉규
    • 한국수소및신에너지학회논문집
    • /
    • 제25권6호
    • /
    • pp.636-642
    • /
    • 2014
  • As environment problem became a worldwide issue, countries are tightening regulations regarding greenhouse gas reduction and improvement of air pollution problems. With these circumstances, one of the renewable energies produced from biomass is getting attention. Bio-ethanol, which is applicable to SI engine, showed a positive effect on the PFI (Port Fuel Injection) type. However, Ethanol has a problem in homogeneous mixture formation because it has high latent heat of vaporization characteristics and in the GDI (Gasoline Direct Injection) type, mixture formation is required quickly after fuel injection. Particularly, South Korea is one of the countries with great temperature variation among seasons. With this reason, South Korea supply fuel additive for smooth engine operation during winter. Therefore, experimental study and investigation about application possibility of blending fuel is necessary. This paper demonstrates the spray characteristics by using the CVC direct injection and setting the bio-ethanol blending fuel temperature close to the temperature during each seasons: -7, 25, $35^{\circ}C$. The diameter and the width of the CVC are 86mm and 39mm. High-pressure fuel supply system was used for target injection pressure. High-speed camera was used for spray visualization. The experiment was conducted by setting the injection pressure and ambient pressure according to each temperature of bio-ethanol blending fuel as a parameter. The result of spray visualization experiment demonstrates that as the temperature of the fuel is lower, the atomization quality is lower, and this increase spray penetration and make mixture formation difficult. Injection strategy according to fuel temperature and bio-ethanol blending rate is needed for improving characteristics.

AMESim을 이용한, GDI 엔진에서 연료의 분사조건 변화에 따른 분사량 변화 예측 (Simulation Injection Mass with Variable Injection Condition in GDI Engine using AMESim)

  • 신석신;송진근;박종호
    • 한국분무공학회지
    • /
    • 제18권1호
    • /
    • pp.61-65
    • /
    • 2013
  • In case of GDI engine, shape of injected fuel and injection mass are one of the most important factors for good fuel efficiency and power. But it should be too inefficient and difficult to acquire injection mass data by experiment because condition in engine vary with temperature, pressure, and so on. So, this paper suggests the AMESim (Advanced Modeling Environment for Simulation of Engineering Systems) as simulation program to calculate injection mass. For both simulation and experiment, n-heptane is used as fuel. In AMESim, I modeled the GDI injector and simulated several cases. In experiment, I acquired the injection mass using Bosch method to apply ambient pressure. The AMESim show reasonable result in comparison with experimental data especially at injection pressure 15 MPa. Other conditions are also in good accord with experimental data but error is a little bit large because the injection mass is so low.

LPG 가스분사 방식 연료공급시스템의 관로 유동해석에 관한 연구 (A Study on the Fluid Network Analysis for the LPG Supply System of the Gaseous Fuel Injection Type)

  • 윤정의;김명환;남현식;정태형
    • 한국자동차공학회논문집
    • /
    • 제15권2호
    • /
    • pp.35-40
    • /
    • 2007
  • The gaseous fuel injection (GFI) type in LPG fuel supply system has more advantage than the liquified fuel injection type from the viewpoint of durability and cost reduction. But in GFI system, to control pressure and temperature of gaseous fuel is needed to get precision fuel metering for the compressible characteristic of gaseous fuel. In this study, the effects of pressure and temperature on the fuel metering was simulated by commercial flow network analysis package, Flowmaster. And the fuel composition effects on the fuel metering were also studied to figure out the fuel metering characteristics.

소형 HSDI 디젤엔진에서의 Common Rail을 이용한 분사압력 변화가 Smoke 및 연료 소모량에 미치는 영향 (The Effect of Injection Pressure Variations on the Smoke and Fuel Consumption in a Small HSDI Diesel Engine with Common Rail Injection System)

  • 류명석;신범식
    • 한국자동차공학회논문집
    • /
    • 제9권2호
    • /
    • pp.28-34
    • /
    • 2001
  • Great attentions are paid to HSDI diesel engine for passenger cars because of its high thermal efficiency. The most interesting research in HSDI diesel engine developments is focused on applying common rail system as a fuel injection equipment. In this study, a series of tests are carried out to investigate the effect of injection pressure variation on the smoke and fuel concluded in a small HSDI diesel engine with common rail system. As a result of this study it is concluded that there is an optimum rail pressure dependent on combustion system such as nozzle type, combustion chamber geometry.

  • PDF

인젝터 구동 전류 패턴 변화가 솔레노이드 타입 커먼레일 인젝터 분사율 특성에 미치는 영향에 대한 컴퓨터시뮬레이션 (A Computer Simulation of Injection Rate Characteristics of Solenoid Type Common Rail Injector According to Injector Driving Current Patterns)

  • 이충훈
    • 한국분무공학회지
    • /
    • 제24권3호
    • /
    • pp.114-121
    • /
    • 2019
  • The effect of injector driving current pattern on fuel injection rate of solenoid diesel common rail injector was studied by computer simulation. The time resolved fuel injection rate and injected quantity per stroke of a common rail injector driven with the five current patterns were computer simulated. The fuel injection rate and injected quantity per stroke according to the rail pressure and fuel injection period were also computer simulated. When the common rail injector was driven with the five driving current patterns of peak & hold, there was no difference in the fuel injection rate in the peak section regardless of all the current patterns of the five cases. On the other hand, the magnitude of the hold current value influenced the injection rate and injected quantity per stroke. That is, in the current pattern of three cases where the hold current value is equal to or more than a constant value of the peak current value, the fuel injection rates for the given common rail rail pressure and injection period are same one another. On the other hand, the current pattern of the two cases, in which the hold current value is smaller than a certain value, there is a large fluctuation in the fuel injection rate.

인젝터 통전기간이 바이오디젤 연료 미립화에 미치는 영향 (Effect of Injector Energizing Duration on the Atomization Characteristics of Biodiesel Fuel)

  • 서현규;박수한;이창식
    • 한국분무공학회지
    • /
    • 제12권2호
    • /
    • pp.108-114
    • /
    • 2007
  • This study investigates the influence of energizing duration on the fuel atomization characteristics of biodiesel injected through a high pressure common-rail injector. In order to analyze the effect of energizing duration on the fuel injection rate performance, the injection rate of biodiesel fuel is obtained from the pressure variation in the tube filled with fuel in injection measuring system. On the other hand, the atomization characteristics of biodiesel was measured and compared in terms of Sauter mean diameter(SMD), arithmetic mean diameter(AMD), droplet mean velocity, and detected droplets number by applying a phase Doppler particle analyzer(PDPA). It was revealed that the injection mass and maximum injection rate increase with increase of the energizing duration. Moreover, the increase of energizing duration improves the atomization performance of biodiesel fuel because it induces higher droplets momentum and velocity.

  • PDF

디젤기관에서 바이오디젤 혼합유의 연소특성에 미치는 연료분사시기의 영향 (Effects of Fuel Injection Timing on Combustion Characteristics of Biodiesel Blend Oil in Diesel Engine)

  • 임재근;조상곤
    • 동력기계공학회지
    • /
    • 제16권3호
    • /
    • pp.10-15
    • /
    • 2012
  • Recently we have a growing interest in environmental pollution and alternative energy. Diesel engine is generally used to produce the power on the ground and the sea. However, the combustion characteristics are changed on account of the wear of fuel system and the altered ambient condition of the combustion chamber by the increment of the engine operation hour. Therefore combustion characteristics on fuel injection timing are experimentally investigated to find out the optimum fuel injection timing in the case of the aged diesel engine using biodiesel blend oil. Cylinder pressure, rate of pressure rise, rate of heat release and combustion gas temperature are risen by the advancing fuel injection timing, while the exhaust gas temperature and soot emission level are decreased by the advancing of fuel injection timing. The least specific fuel oil consumption is indicated at BTDC $26^{\circ}$ CA on the 75%load and at 1800rpm.

디젤엔진 연료분사관의 자긴가공 (Autofrettage of Fuel Injection Pipe for Diesel Engine)

  • 고승기;송원주;서광선;최현선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.90-95
    • /
    • 2007
  • In order to investigate the optimum condition of the autofrettage process for the diesel engine injection pipe, different values of autofrettage pressure, pressure rising time, pressure holding time, and repetition of autofrettage process were applied. Autofrettage was preformed by applying the hydrostatic internal pressures of 603 MPa, 535 MPa, 500 MPa on the fuel injection pipe, corresponding to theoretically 50%, 30%, and 20% overstrain levels, respectively. The autofrettage residual stresses in the injection pipe were experimentally determined by using X-ray diffractometer. As the overstrain level increased, the magnitude of compressive residual stress at the bore increased. It was found that the rising time to reach the autofrettage pressure, holding time at the autofrettage pressure, and repeating application of the autofrettage pressure on the pipe had no significant influence on the residual stress distributions.

  • PDF

燃料噴霧特性 에 관한 硏究 (A Study on the Characteristics of Fuel Spray)

  • 진호근;이창식;서정일
    • 대한기계학회논문집
    • /
    • 제6권3호
    • /
    • pp.256-260
    • /
    • 1982
  • This paper presents the characteristics of fuel spray in a diesel engine. In this paper, in order to obtain spray droplet size in a diesel engine, water was injected into the cylinder at room temperature and pressure by injection system. Spray droplet size was measured by liquid immersion technique with a lubricant used as an immersion liquid for spray water from injection nozzle. In this experiment, single hole type throttle nozzle are used at same operating conditions, which included opening pressure of nozzle, fuel delivery, and injection speed. Sauter mean diameter decrease with the increase of injection pressure and decrease in injection nozzle diameter. The rate of spray penetration increased with increasing injection pressure and diameter of injection nozzle at the constant spray conditions.

액상부탄 분사시스템의 수치시뮬레이션 및 분무특성 예측 (Simulation of Fuel Injection System and Model of Spray Behavior in Liquefied Butane)

  • 김종현;구자예
    • 한국분무공학회지
    • /
    • 제3권2호
    • /
    • pp.24-33
    • /
    • 1998
  • The characteristics of liquefied butane spray are expected to be different from conventional diesel fuel spray, because a kind of flash boiling spray is expected when the back pressure is below the saturation vapor pressure of the butane(0.23MPa at $25^{\circ}C$). An accumulator type pintle injector and its fuel delivery system has been simulated in ruder to give injection pressure, needle lift and rate of fuel injected. The governing equation were solved by finite difference metho. The injection duration was controlled by solenoid valve. Spray behaviors such as a transient spray tip penetration, spray angle and SMD were calculated based on the empirical correlations in case that the back pressure is both above the vapor pressure of the butane and below that of butane. When the back preassure is below the vapor pressure of the fuel, conventional correlation is modified to represent the effect of flash boiling.

  • PDF