• Title/Summary/Keyword: Fuel Utilization

Search Result 433, Processing Time 0.027 seconds

Effect of DUPIC Cycle on CANDU Reactor Safety Parameters

  • Mohamed, Nader M.A.;Badawi, Alya
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1109-1119
    • /
    • 2016
  • Although, the direct use of spent pressurized water reactor (PWR) fuel in CANda Deuterium Uranium (CANDU) reactors (DUPIC) cycle is still under investigation, DUPIC cycle is a promising method for uranium utilization improvement, for reduction of high level nuclear waste, and for high degree of proliferation resistance. This paper focuses on the effect of DUPIC cycle on CANDU reactor safety parameters. MCNP6 was used for lattice cell simulation of a typical 3,411 MWth PWR fueled by $UO_2$ enriched to 4.5w/o U-235 to calculate the spent fuel inventories after a burnup of 51.7 MWd/kgU. The code was also used to simulate the lattice cell of CANDU-6 reactor fueled with spent fuel after its fabrication into the standard 37-element fuel bundle. It is assumed a 5-year cooling time between the spent fuel discharges from the PWR to the loading into the CANDU-6. The simulation was carried out to calculate the burnup and the effect of DUPIC fuel on: (1) the power distribution amongst the fuel elements of the bundle; (2) the coolant void reactivity; and (3) the reactor point-kinetics parameters.

A Study on the Method of the Feasibility Analysis for the Application of C0-Generation System in a New Apartment Complex (신규아파트 열병합발전 도입에 따른 경제성분석 방법)

  • Kee, Woo-Bong;Kim, Kwang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.782-783
    • /
    • 2007
  • Exhaustion of fossil fuel resources and high oil price, and furthermore environmental crisis due to emission of carbon dioxide from fossil fuel are serious problems in these days. In order to overcome these problems it is necessary to find and utilize the every energy saving measures and to make maximum utilization of renewable energy resources. The objective of this paper is to develop an instrument to verify the feasibility of Co-Generation System application in an Apartment Complex.

  • PDF

Economic Analysis for comparing LFG Utilization Alternatives (매립가스 활용대안 선정을 위한 경제성 분석)

  • 김동희;김은주;김봉선
    • Journal of the Korea Safety Management & Science
    • /
    • v.3 no.3
    • /
    • pp.201-211
    • /
    • 2001
  • The most general treatment method of municipal solid waste is a landfill. The LFG (landfill gas) migration is a serious problem in environmental aspect. The object of this study is to present the possibility of LFG utilization as a replacement or supplementary fuel for local energy -demand. We have developed the EXCEL program for the economic analysis.

  • PDF

Development of portable DMFC systems (휴대용 직접 메탄올 연료전지 시스템 개발)

  • Moon, Go-Young;Kim, Hyuk;Yoo, Hwang-Chan;Noh, Tae-Geun;Lee, Won-Ho
    • New & Renewable Energy
    • /
    • v.3 no.1 s.9
    • /
    • pp.46-53
    • /
    • 2007
  • Direct Methanol Fuel Cell, DMFC is a potential power source for portable IT application. DMFC works at low temperature ($<100^{\circ}C$) without fuel processing. Methanol has high energy density, fuel economy, and easiness to handle. This paper focuses high efficient catalyst to increase utilization in the electrode, new membrane reducing methanol crossover, new material parts, and optimization of system integration. Lightweight and small-sized DMFC based on new materials, efficient stack, and improved system control will be applied to the 50W prototype system for the notebook computer.

  • PDF

Emission Characteristics of a Small Size Industrial Gas Turbine Combustor with Varying Methane Concentrations in Fuel (연료 메탄 농도 변화에 따른 발전용 소형 가스터빈 연소기 배기성능 평가)

  • Im, Ji-Hyuk;Choe, Jinhoon;Kim, Ho Keun;Chun, Jaechul
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.221-223
    • /
    • 2012
  • Since gas turbine using biogas can reduce carbon dioxide ($CO_2$), the biogas gas turbine is becoming more attractive to renewable energy utilization business sector. Natural gas and $CO_2$ mixture was used to simulate the biogas fuel. At the experiments pressure losses, pattern factor, and emissions were measured. The results revealed that methane concentrations of the fuel mixture showed little effects on the combustor performance except emissions. As methane concentrations in fuel decreased, emissions measured at the exit of the combustor decreased.

  • PDF

Parametric Design Analysis of a Pressurized Hybrid System Combining Gas Turbine and Solid Oxide Fuel Cell (가스터빈과 고체산화물 연료전지를 결합한 가압형 하이브리드 시스템의 설계변수 해석)

  • Jeong, Young-Hyun;Kim, Tong-Seop;Kim, Jae-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1605-1612
    • /
    • 2002
  • Thermodynamic performance analysis has been carried out for a hybrid electric power generation system combining a gas turbine and a solid oxide fuel cell and operating at over-atmospheric pressure. Performance characteristics with respect to main design parameters such as maximum temperature and pressure ratio are examined in detail. Effects of other important design parameters are investigated including fuel cell internal parameters such as fuel utilization factor, steam/carbon ratio and current density, and system parameters such as recuperator efficiency and compressor inlet temperature.

Circulting Fluidized Bed Combustion of Refuse Derived Fuel and Steam Production (폐기물 고형연료(RDF)의 순환유동층 연소 및 증기생산)

  • Shun, Do-Won;Bae, Dal-Hee;Cho, Sung-Ho;Lee, Seung-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.613-616
    • /
    • 2007
  • A pilot scale circulating fluidized bed for refuse derived fuel is developed and constructed in order to demonstrate efficient and safe utilization of waste fuel. The capacity of the facility is 8 steam tons per hour with the steam quality of $450^{\circ}C$ and 38atm. The quantity and the quality of the produced steam is sufficient to produce 1MWe power capacity. The test operation proved the high combustion efficiency of 99% and up. The emissions of NOx, SOx in flue gas are below 100, 60ppm respectively with out any emission control. HCl emissions were above 400ppm at the combustor exit but reduced below 10ppm after scrubber.

  • PDF

A Fuel Cell Generation System of SEPIC-Flyback Converter using a Single Transformer (단일 변압기를 사용한 SEPIC-Flyback 컨버터의 연료전지 발전 시스템)

  • Kang, K.S.;Jang, S.J.;Lee, T.W.;Kim, S.S.;Won, C.Y.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.357-359
    • /
    • 2005
  • In this paper, a new SEPIC-Flyback converter with a single transformer has been proposed, which is suitable for a fuel cell based power generation system. The proposed converter is superposition of sepic and flyback converter mode. It has outstanding high boosting output voltage, component utilization and high efficiency characteristics under the inherently severe low output voltage of the fuel cell generator. The proposed converter for a full cell generator is described and verified by simulation and experimental result that make used of the Polymer Electrolyte Membrane Fuel Cell(PEMFC) Generator.

  • PDF

Concept, Manufacture and Results of the Microtubular Solid Oxide Fuel Cell

  • Sammes, Nigel;Galloway, Kevin;Yamaguchi, Toshiaki;Serincan, Mustafa
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • This paper summarized concept, manufacture and results of the micro-tubular solid oxide fuel cells (SOFCs). The cells were fabricated by co-sintering of extruded micro-tubular anode support and electrolyte coating layer, and then additional cathode coating. The cells showed quick voltage rising within 1 minute, and the electrochemical performances were closely related to the balance of fuel utilization and performance loss. And a thermal-fluid simulation model was also reported in combination with the electrochemical evaluation results on the GDC-based micro-tubular SOFCs.

Self-Assembly Modification of Perfluorosulfonic Acid Membranes for the Application to Direct Methanol Fuel Cells

  • Moon, Go-Young;Rhim, Ji-Won
    • Macromolecular Research
    • /
    • v.16 no.6
    • /
    • pp.524-531
    • /
    • 2008
  • The mitigation or elimination of methanol crossover for perfluorosulfonic acid fuel cell membranes has been investigated extensively for direct methanol fuel cell applications with the aim of increasing the electrochemical performance and enhancing the utilization rate of methanol. Self-assembly modifications by applying an oppositely charged polyelectrolyte to Nafion membranes were attempted in order to block or reduce methanol crossover while maintaining the other advantageous properties of Nafion membranes. It was reported that anionic polyallylamine hydrochloride (PAH) was the most efficient polyelectrolyte in reducing methanol crossover, and considerable cell performance was obtained even at a methanol feed concentration of 10 M.