• Title/Summary/Keyword: Fuel Test Loop(FTL)

Search Result 15, Processing Time 0.031 seconds

Structural Integrity Evaluation of Fuel Test Loop Submerged in Water Subjected to Postulated Pipe Rupture

  • Lee, Choon-Yeol;Kwon, Jae-Do;Lee, Yong-Son;Kim, Kil-Soo;Kim, Jun-Yeun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.215-225
    • /
    • 2000
  • The structural integrity of the fuel test loop (FTL) in a Korean experimental reactor is evaluated when the FTL, submerged in a water environment, is subjected to a postulated pipe rupture. The analyses are performed under static and dynamic conditions, imposing the thrust force history at each postulated pipe rupture section. Through analysis the following results are found: l) A double ended guillotine can not be expected based on the toughness of the material, 2) the structural integrity of the chimney surrounding the FTL would not impede the structural integrity by the pipe whip. All analyses are performed by finite element methods.

  • PDF

The Construction Work Completion of the Fuel Test Loop (핵연료 노내조사시험설비 설치공사 완료)

  • Park, Kook-Nam;Lee, Chung-Young;Chi, Dae-Young;Park, Su-Ki;Shim, Bong-Sik;Ahn, Sung-Ho;Kim, Hark-Rho;Lee, Jong-Min
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.291-295
    • /
    • 2007
  • FTL(Fuel Test Loop) is a facility that confirms performance of nuclear fuel at a similar irradiation condition with that of nuclear power plant. FTL consists of In-Pile Test Section (IPS) and Out-Pile System (OPS). FTL construction work began on August, 2006 and ended on March, 2007. During Construction, ensuring the worker's safety was the top priority and installation of the FTL without hampering the integrity of the HANARO was the next one. Task Force Team was organized to do a construction systematically and the communication between members of the task force team was done through the CoP(community of Practice) notice board provided by the Institute. The installation works were done successfully overcoming the difficulties such as on the limited space, on the radiation hazard inside the reactor pool, and finally on the shortening of the shut down period of the HANARO. Without a sweet of the workers of the participating company of HEC(Hyundae Engineering Co, Ltd), HDEC(HyunDai Engineering & Construction Co. Ltd), equipment manufacturer, and the task force team, it is not possible to install the FTL facility within the planned shutdown period. The Commissioning of the FTL is on due to check the function and the performance of the equipment and the overall system as well. The FTL shall start operation with high burn up test fuels in early 2008 if the commissioning and licensing progress on schedule.

  • PDF

Flow Network Analysis for the Flow Control of a Main Cooling Water System in the HANARO Fuel Test Loop (하나로 핵연료 시험 루프 주냉각수 계통의 유량 제어에 대한 유동 해석)

  • Park, Young-Chul;Lee, Yong-Sub;Chi, Dae-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.5
    • /
    • pp.7-12
    • /
    • 2009
  • A nuclear fuel test loop(after below, FTL) is installed in the IRI of an irradiation hole in HANARO for testing the neutron irradiation characteristics and thermo hydraulic characteristics of a fuel loaded in a light water power reactor or a heavy water power reactor. There is an in-pile section(IPS) and an out-pile section(OPS) in this test loop. When HANARO is operated normally, the fuel loaded into the IPS has a nuclear reaction heat generated by a neutron irradiation. To remove the generated heat and to maintain the operation conditions of the test fuel, a main cooling water system(MCWS) is installed in the OPS of the FTL. The MCWS is composed of a main cooler, a pressurizer, two circulation pumps, a main heater, an interconnection pipe line and instruments. The interconnection pipeline is a closed loop which is connected to an inlet and an outlet of the IPS respectively. The MCWS is under a cold function test during a start-up period. This paper describes the system flow network analysis results of the flow control of a main cooling water system in the HANARO fuel test loop. It was confirmed through the results that the flow was met the system design requirements.

The Construction Status of Fuel Test Loop Facility (핵연료 노내조사시험설비의 시공 현황)

  • Park, Kook-Nam;Lee, Chung-Young;Kim, Hark-Rho;Yoo, Hyun-Jae;Yoo, Seong-Yeon
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.305-309
    • /
    • 2007
  • FTL(Fuel Test Loop) is a facility that confirms performance of nuclear fuel at a similar irradiation condition with that of nuclear power plant. FTL construction work began on August, 2006 and ended on March, 2007. During Construction, ensuring the worker's safety was the top priority and installation of the FTL without hampering the integrity of the HANARO was the next one. The installation works were done successfully overcoming the difficulties such as on the limited space, on the radiation hazard inside the reactor pool, and finally on the shortening of the shut down period of the HANARO. The Commissioning of the FTL is to check the function and the performance of the equipment and the overall system as well. The FTL shall start operation with high burn up test fuels in early 2008 if the commissioning and licensing progress on schedule.

  • PDF

The Cold Function Test of a Main Cooling Water System for a Nuclear Fuel Test Loop Installed in HANARO (하나로 핵연료 시험장치의 주냉각수 계통 상온기능시험)

  • Park, Young-Chul;Lee, Young-Sub;Chi, Dai-Yong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2505-2510
    • /
    • 2008
  • A nuclear fuel test loop (after below, FTL) is installed in IR1 of an irradiation hole in HANARO for testing neutron irradiation characteristics and thermo hydraulic characteristics of a fuel loaded in a light water power reactor or a heavy water power reactor. When HANARO is normally operated, the fuel loaded in the irradiation hole has a nuclear reaction heat generated by a neutron irradiation. To remove the generated heat and to maintain an operation condition of the test fuel, a main cooling water system (MCWS) is installed in the OPS of the FTL. This paper describes the cold function test results of the MCWS. It was confirmed through the test results that the system met the design requirements under a cold operation condition.

  • PDF

The flow characteristics of a Main Cooling Water System for Nuclear Fuel Test Loop Installed in HANARO (하나로 핵연료 시험루프의 주냉각수 계통 유동해석)

  • Park, Young-Chul;Lee, Young-Sub;Chi, Dai-Yong;Ahn, Seong-Ho;Kim, Yong-Ki
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.444-447
    • /
    • 2008
  • A nuclear fuel test loop (after below, FTL) is installed in IR1 of an irradiation hole in HANARO for testing neutron irradiation characteristics and thermo hydraulic characteristics of a fuel loaded in a light water power reactor (PWR) or a heavy water power reactor (CANDU). There is an in-pile section (IPS) and an out-pile section (OPS) in this test loop. When HANARO is normally operated, the fuel loaded in the IPS has a nuclear reaction heat generated by a neutron irradiation. To remove the generated heat and to maintain an operation condition of the test fuel, a main cooling water system (MCWS) is installed in the OPS of the FTL. The pump can not continuously suck a fluid and not pressurize the fluid during a cold function test. To verify the flow characteristics of the MCWS, a flow net work analysis has been conducted. When the higher elevation pipelines wholly filled with coolant, it was confirmed through the analysis results that the pump pressurized the coolant normally. And the analysis results described the system characteristics with operation temperature and pressure variation satisfactorily.

  • PDF

Development of Sealing Technology for Instrumentation Feedthrough of High Pressure Vessel (고압용기의 계장선 통과부위 밀봉기술 개발)

  • Jeong, H.Y.;Hong, J.T.;Ahn, S.H.;Joung, C.Y.;Lee, J.M.;Lee, C.Y.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.137-143
    • /
    • 2011
  • Fuel Test Loop(FTL) is a facility which could conduct a fuel irradiation test at HANARO(High-flux Advanced Neutron Application Reactor). FTL simulates commercial NPP's operating conditions such as the pressure, temperature and neutron flux levels to conduct the irradiation and thermo-hydraulic tests. The In-Pile Test Section(IPS) installed in HANARO FTL is designed as a pressure vessel design conditions of $350^{\circ}C$, 17.5MPa. The instrumentation MI-cables for thermocouples, SPND and LVDT are passed through the sealing plug, which is in the pressure boundary region and is a part of instrumentation feedthrough of MI-cable. In this study, the brazing method and performance test results are introduced to the sealing plug with BNi-2 filler metal, which is selected with consideration of the compatibility for the coolant. The performance was verified through the insulation resistance test, hydrostatic test, and helium leak test.

Design of Vessel Assembly for Fuel Irradiation Test in Reactor (원자로 내 핵연료조사시험용 압력용기조립체 설계)

  • Park, Kook-Nam;Lee, Jong-Min;Chi, Dae-Young;Park, Su-Ki;Lee, Chung-Young;Kim, Young-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.383-387
    • /
    • 2004
  • The Fuel Test Loop (FTL) consists of In-Pile Test Section (IPS) and Out-of-Pile System (OPS). The test condition in IPS such as pressure, temperature and quality of the main cooling water, can be controlled by the OPS. The FTL has been developed to be able to irradiate three pins to the core irradiation hole (IR1 hole) by considering for its utility and user's irradiation requirement. The IPS vessel assembly (IVA) consists of IPS head, outer pressure vessel, inner pressure vessel, inner assembly and test fuel carrier. The IVA is approximately 5.6 m long and fits within a 74 mm in diameter envelope over the full height of the chimney. Above the top of the chimney, the head of the IPS is enlarged to allow the closure flanges and pipe work connections. IVA was designed to test the CANDU and PWR nuclear fuel pin together. Specially, wished to minimize interference by nuclear fuel change in design and synthesize these items and shape design for IVA.

  • PDF

The Design Status of the Irradiation Facility for Fuel Test (핵연료 시험용 노내조사시험설비의 설계 현황)

  • Park, Kook-Nam;Sim, Bong-Shick;Ahn, Sung-Ho;Yoo, Seong-Yeon
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.310-315
    • /
    • 2007
  • The FTL has been developed to be able to irradiate test fuels at the irradiation hole(IR1 hole) by considering its utility and user's irradiation requirements. FTL consists of In-Pile Test Section (IPS) and Out-of-Pile System (OPS). Test condition in IPS such as pressure, temperature and the water quality, can be controlled by OPS. For safety assurance IPS is designed to have dual stainless steel pressure vessel and OPS is composed of main cooling water system, emergency cooling water system, LMP(letdown, make-up, purification) system, etc. FTL Conceptual design was set up in 2001, basic design had completed including a design requirement, basic piping & instrument diagram (P&ID), and the detail design in 2004. In 2005, the development team carried out purchase and manufacture hardware and make a contract for construction work. FTL construction work began on August, 2006 and ended on March, 2007. After FTL development which is expected to be finished by 2008, FTL will be used for the irradiation test of the new PWR-type fuel and can maximize the usage of HANARO.

  • PDF