• Title/Summary/Keyword: Fuel Swelling

Search Result 96, Processing Time 0.024 seconds

Preliminary study on the thermal-mechanical performance of the U3Si2/Al dispersion fuel plate under normal conditions

  • Yang, Guangliang;Liao, Hailong;Ding, Tao;Chen, Hongli
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3723-3740
    • /
    • 2021
  • The harsh conditions in the reactor affect the thermal and mechanical performance of the fuel plate heavily. Some in-pile behaviors, like fission-induced swelling, can cause a large deformation of fuel plate at very high burnup, which may even disturb the flow of coolant. In this research, the emphasis is put on the thermal expansion, fission-induced swelling, interaction layer (IL) growth, creep of the fuel meat, and plasticity of the cladding for the U3Si2/Al dispersion fuel plate. A detailed model of the fuel meat swelling is developed. Taking these in-pile behaviors into consideration, the three-dimensional large deformation incremental constitutive relations and stress update algorithms have been developed to study its thermal-mechanical performance under normal conditions using Abaqus. Results have shown that IL can effectively decrease the thermal conductivity of fuel meat. The high Mises stress region mainly locates at the interface between fuel meat and cladding, especially around the side edge of the interface. With irradiation time increasing, the stress in the fuel plate gets larger resulting from the growth of fuel meat swelling but then decreases under the effect of creep deformation. For the cladding, plasticity deformation does not occur within the irradiation time.

INFLUENCE OF FUEL-MATRIX INTERACTION ON THE BREAKAWAY SWELLING OF U-MO DISPERSION FUEL IN AL

  • Ryu, Ho Jin;Kim, Yeon Soo
    • Nuclear Engineering and Technology
    • /
    • v.46 no.2
    • /
    • pp.159-168
    • /
    • 2014
  • In order to advance understanding of the breakaway swelling behavior of U-Mo/Al dispersion fuel under a high-power irradiation condition, the effects of fuel-matrix interaction on the fuel performance of U-Mo/Al dispersion fuel were investigated. Fission gas release into large interfacial pores between interaction layers and the Al matrix was analyzed using both mechanistic models and observations of the post-irradiation examination results of U-Mo dispersion fuels. Using the model predictions, advantageous fuel design parameters are recommended to prevent breakaway swelling.

Impacts of Burnup-Dependent Swelling of Metallic Fuel on the Performance of a Compact Breed-and-Burn Fast Reactor

  • Hartanto, Donny;Heo, Woong;Kim, Chihyung;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.330-338
    • /
    • 2016
  • The U-Zr or U-TRU-Zr cylindrical metallic fuel slug used in fast reactors is known to swell significantly and to grow during irradiation. In neutronics simulations of metallic-fueled fast reactors, it is assumed that the slug has swollen and contacted cladding, and the bonding sodium has been removed from the fuel region. In this research, a realistic burnup-dependent fuel-swelling simulation was performed using Monte Carlo code McCARD for a single-batch compact sodium-cooled breed-and-burn reactor by considering the fuel-swelling behavior reported from the irradiation test results in EBR-II. The impacts of the realistic burnup-dependent fuel swelling are identified in terms of the reactor neutronics performance, such as core lifetime, conversion ratio, axial power distribution, and local burnup distributions. It was found that axial fuel growth significantly deteriorated the neutron economy of a breed-and-burn reactor and consequently impaired its neutronics performance. The bonding sodium also impaired neutron economy, because it stayed longer in the blanket region until the fuel slug reached 2% burnup.

A Comprehensive Swelling Model of Silicide Dispersion Fuel for Research Reactor (연구로용 우라늄실리사이드 분산형 핵연료의 팽윤모델)

  • Woan Hwang;Suk, Ho-Chun;Jae, Won-Mok
    • Nuclear Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.40-51
    • /
    • 1992
  • One of the important irradiation performance characteristics of the silicide dispersion fuel element in research reactors is the diameteral increase resulting from fuel swelling. This paper, will attempt to develop a physical model for the fuel swelling, DFSWELL, by analyzing the basic irradiation behaviours and some experimental evidences. From the experimental evidences, it was shown that the volume changes in irradiated U$_3$Si-Al were strongly dependent on temperature and fission rate. The quantitative-amount of swelling for silicide fuel is estimated by considering temperature, fission rate, solid fission product build-up and gas bubble behavior. The swelling for the silicide fuel is comprised of three major components : i ) a volume change due to the formation of an interfacial layer between the fuel particle and matrix. ii ) a volume change due to the accumulation of gas bubble nucleation iii ) a volume change due to the accumulation of solid fission products The DFSWELL model which takes into account the above three major physical components predicts well the absolute magnitude of silicide fuel swelling in accordance with the power histories in comparison with the experimental data.

  • PDF

A CLASSIFICATION OF UNIQUELY DIFFERENT TYPES OF NUCLEAR FISSION GAS BEHAVIOR

  • HOFMAN GERARD L.;KIM YEON SOO
    • Nuclear Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.299-308
    • /
    • 2005
  • The behavior of fission gas in all major types of nuclear fuel has been reviewed with an emphasis on more recently discovered aspects. It is proposed that the behavior of fission gas can be classified in a number of characteristic types that occur at a high or low operating temperature, and/or at high or low fissile burnup. The crystal structure and microstructure of the various fuels are the determinant factors in the proposed classification scheme. Three types of behavior, characterized by anisotropic $\alpha$-U, high temperature metallic $\gamma$-U, and cubic ceramics, are well-known and have been extensively studied in the literature. Less widely known are two equally typical low temperature kinds: one associated with fission induced grain refinement and the other with fission induced amorphization. Grain refinement is seen in crystalline fuel irradiated to high burnup at low temperatures, whereas breakaway swelling is observed in amorphous fuel containing sufficient excess free-volume. Amorphous fuel, however, shows stable swelling if insufficient excess free-volume is available during irradiation.

Modelling of effective irradiation swelling for inert matrix fuels

  • Zhang, Jing;Wang, Haoyu;Wei, Hongyang;Zhang, Jingyu;Tang, Changbing;Lu, Chuan;Huang, Chunlan;Ding, Shurong;Li, Yuanming
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2616-2628
    • /
    • 2021
  • The results of effective irradiation swelling in a wide range of burnup levels are numerically obtained for an inert matrix fuel, which are verified with DART model. The fission gas swelling of fuel particles is calculated with a mechanistic model, which depends on the external hydrostatic pressure. Additionally, irradiation and thermal creep effects are included in the inert matrix. The effects of matrix creep strains, external hydrostatic pressure and temperature on the effective irradiation swelling are investigated. The research results indicate that (1) the above effects are coupled with each other; (2) the matrix creep effects at high temperatures should be involved; and (3) ranged from 0 to 300 MPa, a remarkable dependence of external hydrostatic pressure can be found. Furthermore, an explicit multi-variable mathematic model is established for the effective irradiation swelling, as a function of particle volume fraction, temperature, external hydrostatic pressure and fuel particle fission density, which can well reproduce the finite element results. The mathematic model for the current volume fraction of fuel particles can help establish other effective performance models.

A Concise Design for the Irradiation of U-10Zr Metallic Fuel at a Very Low Burnup

  • Guo, Haibing;Zhou, Wei;Sun, Yong;Qian, Dazhi;Ma, Jimin;Leng, Jun;Huo, Heyong;Wang, Shaohua
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.734-743
    • /
    • 2017
  • In order to investigate the swelling behavior and fuel-cladding interaction mechanism of U-10Zr alloy metallic fuel at very low burnup, an irradiation experiment was concisely designed and conducted on the China Mianyang Research Reactor. Two types of irradiation samples were designed for studying free swelling without restraint and the fuel-cladding interaction mechanism. A new bonding material, namely, pure aluminum powder, was used to fill the gap between the fuel slug and sample shell for reducing thermal resistance and allowing the expansion of the fuel slug. In this paper, the concise irradiation rig design is introduced, and the neutronic and thermal-hydraulic analyses, which were carried out mainly using MCNP (Monte Carlo N-Particle) and FLUENT codes, are presented. Out-of-pile tests were conducted prior to irradiation to verify the manufacturing quality and hydraulic performance of the rig. Nondestructive postirradiation examinations using cold neutron radiography technology were conducted to check fuel cladding integrity and swelling behavior. The results of the preliminary examinations confirmed the safety and effectiveness of the design.

Studies on Physical Properties of Sulfonpolyimide for Fuel Cell (연료전지용 술폰폴리이미드의 물성 연구)

  • Ko, Jae-Churl;Ahn, Bum-Jong;Park, Young-Goo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.151-156
    • /
    • 2005
  • Many researchers have been focused on polymer electrolyte membrane (PEM) to improve performance of a fuel cell. Sulfonpolyimide with hydrocarbon was synthesized from ODA (4,4-diaminodiphenyl ether), ODADS (4,4-diaminodiphenyl ether-2,2-disulfonic acid), NTDA (1,4,5,8-naphthalenetetracarboxylicdianhydride) and CSA (chlorosulfonic acid). In order to estimate the feasibility as a fuel cell, the performance of sulfonpolyimide was analyzed through a swelling degree, IEC (ion exchange capacity), ion conductivity and TEM (transmission electron microscope). As the results of this performance test, swelling degree, IEC and ion conductivity were 37%, 0.06 meq/g and 0.08 S/cm respectively, when the CSA concentration was 0.4 M. It was thought that sulfonpolyimide could be used as a fuel cell through improvement of electrolyte membrane.

A model for calculating the irradiation swelling of AgInCd absorber in nuclear control rods

  • Hongsheng Chen;Hongxing Xiao;Chongsheng Long;Xuesong Leng
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.552-557
    • /
    • 2024
  • The actual swelling of AgInCd absorber might exceed the predicted swelling value after years of service in pressurized water reactors, and the chemical and microstructural changes of AgInCd absorber induced by transmutation reactions are the main reason for the swelling acceleration of AgInCd absorber. In the present study, a model for calculating the irradiation swelling of AgInCd absorber in nuclear control rods is developed according to chemical and microstructural changes of AgInCd absorber. In this model, the chemical compositions of AgInCd absorber as a function of the thermal neutron fluence are firstly calculated, and then the volume of AgInCd absorber after irradiation is obtained on the basis of the crystallographic parameters of phases in the AgInCd absorber, and the irradiation swelling of AgInCd absorber is finally calculated. The crystallographic parameters can be obtained by preparing the simulated AgInCd alloys and fitting the experimental data. The model calculating results of irradiation swelling are in good agreement with the actual swelling data in literature. More importantly, the present model can well explain the EPRI results of the acceleration in the diametral swelling rate above 6-8 × 1020 n/cm2 and the decrease in the diametral swelling rate above about 2 × 1021 n/cm2.

Thermal Stress Analysis of Spent Nuclear Fuel Disposal Canister (심지층 고준위 핵폐기물 처분용기의 열응력 해석)

  • 하준용;권영주;최종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.617-620
    • /
    • 1997
  • In this paper, the thermal stress analysis of spent nuclear fuel disposal canister in a deep repository at 500m underground is done for the underground pressure variation. Since the nuclear fuel disposal usually emits much heat and radiation, its careful treatment is required. And so a long term safe repository at a deep bedrock is used. Under this situation, the canister experiences some mechanical external loads such as hydrostatic pressure of underground water, swelling pressure of bentonite buffer, and the thermal load due to the heat generation of spent nuclear fuel in the basket etc.. Hence, the canister should be designed to designed to withstand these loads. In this paper, the thermal stress analysis is done using the finite element analysis code, NISA.

  • PDF