DOI QR코드

DOI QR Code

A model for calculating the irradiation swelling of AgInCd absorber in nuclear control rods

  • Hongsheng Chen (Institute of Special Environments Physical Sciences, Harbin Institute of Technology (Shenzhen)) ;
  • Hongxing Xiao (Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China) ;
  • Chongsheng Long (Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China) ;
  • Xuesong Leng (Institute of Special Environments Physical Sciences, Harbin Institute of Technology (Shenzhen))
  • Received : 2023.04.18
  • Accepted : 2023.10.22
  • Published : 2024.02.25

Abstract

The actual swelling of AgInCd absorber might exceed the predicted swelling value after years of service in pressurized water reactors, and the chemical and microstructural changes of AgInCd absorber induced by transmutation reactions are the main reason for the swelling acceleration of AgInCd absorber. In the present study, a model for calculating the irradiation swelling of AgInCd absorber in nuclear control rods is developed according to chemical and microstructural changes of AgInCd absorber. In this model, the chemical compositions of AgInCd absorber as a function of the thermal neutron fluence are firstly calculated, and then the volume of AgInCd absorber after irradiation is obtained on the basis of the crystallographic parameters of phases in the AgInCd absorber, and the irradiation swelling of AgInCd absorber is finally calculated. The crystallographic parameters can be obtained by preparing the simulated AgInCd alloys and fitting the experimental data. The model calculating results of irradiation swelling are in good agreement with the actual swelling data in literature. More importantly, the present model can well explain the EPRI results of the acceleration in the diametral swelling rate above 6-8 × 1020 n/cm2 and the decrease in the diametral swelling rate above about 2 × 1021 n/cm2.

Keywords

Acknowledgement

This study was financially supported by the National Natural Science Foundation of China (No. 51601184) and the National Science and Technology Major Project of China (No. 2011ZX06004-016).

References

  1. F. Nagase, T. Ohtomo, H. Uetsuka, Release behaviors of elements from an Ag-In-Cd control rod alloy at temperatures up to 1673 K, Nucl. Technol. 208 (2022) 484-493.
  2. A. Strasser, W. Yario, Control Rod Materials and Burnable Poisons. EPRI TPS 79-708, Electric Power Research Institute, 1980.
  3. H. Chen, H. Wang, Q. Sun, C. Long, T. Wei, H. Xiao, Y. Zhao, Microstructural evolution and mechanical properties of an AgInCd alloy during compressive deformation process, J. Alloys Compd. 770 (2019) 608-615.
  4. M. Steinbruck, U. Stegmaier, M. Grosse, Experiments on silver-indium-cadmium control rod failure during severe nuclear accidents, Ann. Nucl. Energy 101 (2017) 347-358.
  5. W. Wan, H. Chen, C. Long, Q. Sun, G. Li, H. Wang, Q. Tang, The compressive deformation mechanisms of a coarse-grained AgInCd alloy, Mater. Char. 134 (2017) 279-284.
  6. J. Kalilainen, T. Lind, J. Stuckert, T. Bergfeldt, O. Sippula, J. Jokiniemi, The measurement of Ag/In/Cd release under air-ingress conditions in the QUENCH-18 bundle test, J. Nucl. Mater. 517 (2019) 315-327.
  7. W. Wan, H. Chen, H. Wang, C. Long, Q. Sun, Y. Li, G. Li, J. Luo, Microstructure evolution and mechanical properties of the compressively deformed AgInCd alloy during annealing treatment, Mater. Char. 138 (2018) 165-173.
  8. Cs Maraczy, ' A. Kereszturi, I. Trosztel, Gy Hegyi, Safety analysis of reactivity initiated accidents in a HPLWR reactor by the coupled ATHLET-KIKO3D code, Prog. Nucl. Energy 52 (2010) 190-196.
  9. H. Chen, C. Long, H. Xiao, L. Chen, T. Wei, Microstructure and creep mechanism of the Ag-In-Cd alloy under compressive load at 300-400 ℃, Mater. Des. 65 (2015) 468-472.
  10. O. Noori-Kalkhoran, A. Minuchehr, R. Akbari-Jeyhouni, A.S. Shirani, M. Rahgoshay, Simulation of rod ejection accident in a WWER-1000 Nuclear Reactor by using PARCS code, Ann. Nucl. Energy 65 (2014) 132-140.
  11. P.J. Sipush, J. Woodcock, R.W. Chickering, Lifetime of PWR Silver-Indium-Cadmium Control Rods, Electric Power Research Institute Report NP-4512, 1986.
  12. H. Chen, C. Long, H. Xiao, T. Wei, G. Le, Estimation of the chemical compositions and corresponding microstructures of AgInCd absorber under irradiation condition, Nucl. Eng. Technol. 52 (2020) 344-351.
  13. G.S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys, Springer, Berlin/Heidelberg, Germany, 2016.
  14. D.R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements, U.S. Department of Commerce, National Technical Information Service, Oak Ridge, 1976.
  15. T. Matsuoka, Y. Yamaguchi, T. Yonezawa, K. Murakami, S. Shiraishi, T. Nagata, Cladding tube cracking caused by absorber swelling for PWR RCCA rodlets, J. Nucl. Sci. Technol. 36 (1999) 584-595.
  16. J. Bourgoin, F. Couvreur, D. Gosset, F. Defoort, M. Monchanin, X. Thibaul, The behaviour of control rod absorber under irradiation, J. Nucl. Mater. 275 (1999) 296-304.
  17. C. Desgranges, Understanding and Predicting the Behaviour of Silver Base Neutron Absorbers under Irradiations, CEA Technical Report, 1998. CEA-R-5805.
  18. I.C. Gauld, G. Radulescu, G. Ilas, B.D. Murphy, M.L. Williams, D. Wiarda, Isotopic depletion and decay methods and analysis capabilities in SCALE, Nucl. Technol. 174 (2011) 169-195.
  19. G. Gottstein, Physical Foundations of Materials Science, Springer-Verlag Berlin Heidelberg, 2004.
  20. C.F. Reinke, Examination of Irradiated Ag-In-Cd Alloys, AEC Research and Development Report, 1965. ANL-6883.
  21. R.A. Murgatroyd, B.T. Kelly, Technology and assessment of neutron absorbing materials, Atom. Energy Rev. 15 (1977) 1.
  22. K.A.P.L. Reactor, Technology report No. 8 - metallurgy, Knolls Atomic Power Lab (1959). Technical Report, 1959 KAPL-2000-5.
  23. W.K. Anderson, J.S. Theilacker, Neutron Absorber Materials for Reactor Control, US Atomic Energy Commission, 1962.
  24. W.R. Smalley, Engineering and metallurgical evaluation of an irradiated yankee core I control rod, in: WCAP-6074, Westinghouse Electric Corp., Pittsburgh, July 1, 1966.
  25. D. Scott, Metallurgical Evaluation of AgInCd Control Rod Alloys, Westinghouse Technical Report, 1964. WCAP-2369-29.
  26. L. Heins, A. Roppelt, P. Dewes, Design of control rods for pressurized water reactors with special consideration of absorber swelling and clad creepdown, in: Advances in Control Assembly Materials for Water Reactors, IAEA-TECDOC-813, IAEA, Vienna, 1995, pp. 15-36.
  27. EPRI, Pressurized water reactor AgInCd control rod lifetime, in: EPRI Technical Report 1019106, Aug 27, 2009. https://www.epri.com/research/products/1019106.