• 제목/요약/키워드: Fuel Particles

검색결과 515건 처리시간 0.023초

Development of Micro Tensile Test of CVD-SiC coating Layer for TRISO Nuclear Fuel Particles at elevated temperature

  • Lee, Hyun-Min;Park, Kwi-Il;Kim, Do-Kyung
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.95.1-95.1
    • /
    • 2012
  • Very High Temperature gas cooler Reactor (VHTR) has been considered as one of the most promising nuclear reactor because of many advantages including high inherent safety to avoid environmental pollution, high thermal efficiency and the role of secondary energy source. The TRISO coated fuel particles used in VHTR are composed of 4 layers as OPyC, SiC, IPyC and buffer PyC. The significance of CVD-SiC coatings used in tri-isotropic(TRISO) nuclear coated fuel particles is to maintain the strength of the whole particle. Various methods have been proposed to evaluate the mechanical properties of CVD-SiC film at room temperature. However, few works have been attempted to characterize properties of CVD-SiC film at high temperature. In this study, micro tensile system was newly developed for mechanical characterization of SiC thin film at elevated temperature. Two kinds of CVD-SiC films were prepared for micro tensile test. SiC-A had [111]-preferred orientation, while SiC-B had [220]-preferred orientation. The free silicon was co-deposited in SiC-B coating layer. The fracture strength of two different CVD-SiC films was characterized up to $1000^{\circ}C$.The strength of SiC-B film decreased with temperature. This result can be explained by free silicon, observed in SiC-B along the columnar boundaries by TEM. The presence of free silicon causes strength degradation. Also, larger Weibull-modulus was measured. The new method can be used for thin film material at high temperature.

  • PDF

파라핀/알루미늄 연료의 알루미늄 입자크기 및 함유비 변화에 따른 유변학적 특성 (Rheological Investigation of Aluminized Paraffin Wax Fuel on Particle Size and Contents)

  • 류성훈;한승주;문희장;김진곤;김준형;고승원
    • 한국추진공학회지
    • /
    • 제22권2호
    • /
    • pp.11-19
    • /
    • 2018
  • 본 연구에서는 하이브리드 로켓용 파라핀/알루미늄 연료의 유변학적 특성 파악을 위한 점도 측정을 수행하였다. 혼합된 알루미늄 입자의 크기와 첨가량에 따른 유변학적 특성을 파악하기 위해 평균 입도 100 nm, $8{\mu}m$의 나노 및 마이크로 크기 알루미늄 입자첨가 시료를 제작하였으며, 회전형 레오미터를 사용해 점도를 측정하였다. 나노 및 마이크로 입자 함유비에 따른 증가율 패턴은 대단히 상이하였으며 입자의 함유비 10 wt%를 경계로 점도 증가율이 구분되었고, 나노입자 첨가 시 연료의 유입 후퇴율 감소에 따른 총 후퇴율의 저하를 예상할 수 있었다.

잔사유 분무 연소 해석에 관한 연구 (Combustion Modeling of Vacuum Residue Fuel Sprays)

  • 최찬호;허강열
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제28회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.207-214
    • /
    • 2004
  • Extra heavy vacuum residue oil has advantage as the fuel of a power plant in reducing the cost of power generation. Numerical study is conducted by the KIVA code to understand combustion, heat transfer and flow field characteristics in the test reactor. The combustion model of pulverized coal particles is adopted as the combustion process of extra heavy oil is similar to that of coal. As an initial phase of investigation parametric study is performed with respect to SMD and spray angle of injected spray droplets.

  • PDF

An Experimental Investigation on the Contamination Sensitivity of an Automotive Fuel Pump

  • Lee Jae-Cheon;Shin Hyun-Myng
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권3호
    • /
    • pp.51-55
    • /
    • 2005
  • This study addresses the contamination sensitivity test of a typical fuel pump for an automotive vehicle. The objective of the study is to find the contamination sensitivity coefficient of a fuel pump on specific contaminant particle sizes so that an optimal fuel filter could be selected. To achieve the objective, the degradation of discharge flow rate of the fuel pump is measured under the experiments of various contaminants size ranges of ISO test dust up to $80\;{\mu}m$. The fundamental theory of contamination sensitivity is introduced and the contamination sensitivity coefficients are estimated using the experimental data. Maximum contamination sensitivity coefficient of $5\chi\;10^{-6}\;L/min{\cdot}Ea$ is found in the contaminant size range of $40\;{\mu}m\~50\;{\mu}m$. The magnified picture of the surface of vane disc reveals that the abrasive wear is the principal cause of discharge flow rate degradation. Hence, this study reveals that a high efficiency filter for contaminant particles especially in the size range of $30\;{\mu}m\~70\;{\mu}m$ especially should be used to maintain the service life of the fuel filter.

COATED PARTICLE FUEL FOR HIGH TEMPERATURE GAS COOLED REACTORS

  • Verfondern, Karl;Nabielek, Heinz;Kendall, James M.
    • Nuclear Engineering and Technology
    • /
    • 제39권5호
    • /
    • pp.603-616
    • /
    • 2007
  • Roy Huddle, having invented the coated particle in Harwell 1957, stated in the early 1970s that we know now everything about particles and coatings and should be going over to deal with other problems. This was on the occasion of the Dragon fuel performance information meeting London 1973: How wrong a genius be! It took until 1978 that really good particles were made in Germany, then during the Japanese HTTR production in the 1990s and finally the Chinese 2000-2001 campaign for HTR-10. Here, we present a review of history and present status. Today, good fuel is measured by different standards from the seventies: where $9*10^{-4}$ initial free heavy metal fraction was typical for early AVR carbide fuel and $3*10^{-4}$ initial free heavy metal fraction was acceptable for oxide fuel in THTR, we insist on values more than an order of magnitude below this value today. Half a percent of particle failure at the end-of-irradiation, another ancient standard, is not even acceptable today, even for the most severe accidents. While legislation and licensing has not changed, one of the reasons we insist on these improvements is the preference for passive systems rather than active controls of earlier times. After renewed HTGR interest, we are reporting about the start of new or reactivated coated particle work in several parts of the world, considering the aspects of designs/ traditional and new materials, manufacturing technologies/ quality control quality assurance, irradiation and accident performance, modeling and performance predictions, and fuel cycle aspects and spent fuel treatment. In very general terms, the coated particle should be strong, reliable, retentive, and affordable. These properties have to be quantified and will be eventually optimized for a specific application system. Results obtained so far indicate that the same particle can be used for steam cycle applications with $700-750^{\circ}C$ helium coolant gas exit, for gas turbine applications at $850-900^{\circ}C$ and for process heat/hydrogen generation applications with $950^{\circ}C$ outlet temperatures. There is a clear set of standards for modem high quality fuel in terms of low levels of heavy metal contamination, manufacture-induced particle defects during fuel body and fuel element making, irradiation/accident induced particle failures and limits on fission product release from intact particles. While gas-cooled reactor design is still open-ended with blocks for the prismatic and spherical fuel elements for the pebble-bed design, there is near worldwide agreement on high quality fuel: a $500{\mu}m$ diameter $UO_2$ kernel of 10% enrichment is surrounded by a $100{\mu}m$ thick sacrificial buffer layer to be followed by a dense inner pyrocarbon layer, a high quality silicon carbide layer of $35{\mu}m$ thickness and theoretical density and another outer pyrocarbon layer. Good performance has been demonstrated both under operational and under accident conditions, i.e. to 10% FIMA and maximum $1600^{\circ}C$ afterwards. And it is the wide-ranging demonstration experience that makes this particle superior. Recommendations are made for further work: 1. Generation of data for presently manufactured materials, e.g. SiC strength and strength distribution, PyC creep and shrinkage and many more material data sets. 2. Renewed start of irradiation and accident testing of modem coated particle fuel. 3. Analysis of existing and newly created data with a view to demonstrate satisfactory performance at burnups beyond 10% FIMA and complete fission product retention even in accidents that go beyond $1600^{\circ}C$ for a short period of time. This work should proceed at both national and international level.

Study on the Fluidized-Bed Drying Characteristics of Sawdust as a Raw-Material for Wood-Pellet Fuel

  • Lee, Hyoung-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • 제34권2호
    • /
    • pp.30-36
    • /
    • 2006
  • Wood fuel must be dried before combustion to minimize the energy loss. Sawdust of Japanese red pine was dried in a batch type fluidized-bed to investigate the drying characteristics of sawdust as a raw material for bio-fuel. The minimum fluidization air velocity was increased as particle size was increased. It took about 21 minutes and 8 minutes to dry 0.08 m-deep bed of particles with average particle size of 1.3 mm from 100% to 10% moisture content at air temperature of $20^{\circ}C$ and $50^{\circ}C$, respectively.

다중 고체상을 고려한 고체 연료층 연소 모델링 (Combustion Modeling of a Solid Fuel Bed with Consideration of the Multiple Solid Phases)

  • 양원;류창국;최상민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 제26회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.119-127
    • /
    • 2003
  • In this study we propose an unsteady I-dimensional model of bed combustion with multiple solid phases, which confers a phase on each solid material. This model can be applied to a variety of bed combustion cases of various configurations and ignition methods. It contains fuel combustion, gaseous reaction, heat transfers between each phase, and geometric changes of the solid particles. An iron ore sintering pot is selected for verifying the model validity and simulation results are compared with the limited experimental data set of various coke contents and air supply rates. They predict the experimental results well and show applicabilities to the various system of the fuel bed with various solid materials.

  • PDF

석탄-물 혼합연료(CWM)의 분무 특성 (Atomization Characteristics of Coal-Water Mixture Fuel)

  • 노남선;신대현;김광호
    • 에너지공학
    • /
    • 제3권2호
    • /
    • pp.130-150
    • /
    • 1994
  • Coal-water mixture(CWM) fuel has attracted much attention as a substitute fuel for oil by which high economics and short-term commercialization might be realized in comparison with other coal conversion technologies. There are many factors that affect the CWM combustibility, such as the physical properties of CWM, the performance of atomizer and burner, operating conditions, capacity and load of the boiler, etc. Particularly, atomization quality is extremely critical to achieving acceptable carbon conversion efficiency of CWM fuel and maintaining the flame stability, because the coal particles in the CWM droplets burn as agglomerates. This paper presents the R&D results about the CWM atomization characteristics, including the significance of CWM atomization the R&D results about the CWM atomization characteristics, including the significance of CWM atomization quality, the atomization and combustion mechanism, the type of CWM atomizer, size and size distribution of CWM droplets and some factors that influence the atomization performance.

  • PDF

Study of the mechanical properties and effects of particles for oxide dispersion strengthened Zircaloy-4 via a 3D representative volume element model

  • Kim, Dong-Hyun;Hong, Jong-Dae;Kim, Hyochan;Kim, Jaeyong;Kim, Hak-Sung
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1549-1559
    • /
    • 2022
  • As an accident tolerant fuel (ATF) concept, oxide dispersion strengthened Zircaloy-4 (ODS Zry-4) cladding has been developed to enhance the mechanical properties of cladding using laser processing technology. In this study, a simulation technique was established to investigate the mechanical properties and effects of Y2O3 particles for the ODS Zry-4. A 3D representative volume element (RVE) model was developed considering the parameters of the size, shape, distribution and volume fraction (VF) of the Y2O3 particles. From the 3D RVE model, the Young's modulus, coefficient of thermal expansion (CTE) and creep strain rate of the ODS Zry-4 were effectively calculated. It was observed that the VF of Y2O3 particles had a significant effect on the aforementioned mechanical properties. In addition, the predicted properties of ODS Zry-4 were applied to a simulation model to investigate cladding deformation under a transient condition. The ODS Zry-4 cladding showed better performance, such as a delay in large deformation compared to Zry-4 cladding, which was also found experimentally. Accordingly, it is expected that the simulation approach developed here can be efficiently employed to predict more properties and to provide useful information with which to improve ODS Zry-4.

Study on the effect of long-term high temperature irradiation on TRISO fuel

  • Shaimerdenov, Asset;Gizatulin, Shamil;Dyussambayev, Daulet;Askerbekov, Saulet;Ueta, Shohei;Aihara, Jun;Shibata, Taiju;Sakaba, Nariaki
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.2792-2800
    • /
    • 2022
  • In the core of the WWR-K reactor, a long-term irradiation of tristructural isotopic (TRISO)-coated fuel particles (CFPs) with a UO2 kernel was carried out under high-temperature gas-cooled reactor (HTGR)-like operating conditions. The temperature of this TRISO fuel during irradiation varied in the range of 950-1100 ℃. A fission per initial metal atom (FIMA) of uranium burnup of 9.9% was reached. The release of gaseous fission products was measured in-pile. The release-to-birth ratio (R/B) for the fission product isotopes was calculated. Aspects of fuel safety while achieving deep fuel burnup are important and relevant, including maintaining the integrity of the fuel coatings. The main mechanisms of fuel failure are kernel migration, silicon carbide corrosion by palladium, and gas pressure increase inside the CFP. The formation of gaseous fission products and carbon monoxide leads to an increase in the internal pressure in the CFP, which is a dominant failure mechanism of the coatings under this level of burnup. Irradiated fuel compacts were subjected to electric dissociation to isolate the CFPs from the fuel compacts. In addition, nondestructive methods, such as X-ray radiography and gamma spectrometry, were used. The predicted R/B ratio was evaluated using the fission gas release model developed in the high-temperature test reactor (HTTR) project. In the model, both the through-coatings of failed CFPs and as-fabricated uranium contamination were assumed to be sources of the fission gas. The obtained R/B ratio for gaseous fission products allows the finalization and validation of the model for the release of fission products from the CFPs and fuel compacts. The success of the integrity of TRISO fuel irradiated at approximately 9.9% FIMA was demonstrated. A low fuel failure fraction and R/B ratios indicated good performance and reliability of the studied TRISO fuel.