• Title/Summary/Keyword: Fuel Grain

Search Result 209, Processing Time 0.025 seconds

Ammonium uranate hydrate wet reconversion process for the production of nuclear-grade UO2 powder from uranyl nitrate hexahydrate solution

  • Byungkuk Lee ;Seungchul Yang;Dongyong Kwak ;Hyunkwang Jo ;Youngwoo Lee;Youngmoon Bae ;Jayhyung Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2206-2214
    • /
    • 2023
  • The existing wet reconversion processes for the recovery of scraps generated in manufacturing of nuclear fuel are complex and require several unit operation steps. In this study, it is attempted to simplify the recovery process of high-quality fuel-grade UO2 powder. A novel wet reconversion process for uranyl nitrate hexahydrate solution is suggested by using a newly developed pulsed fluidized bed reactor, and the resultant chemical characteristics are evaluated for the intermediate ammonium uranate hydrate product and subsequently converted UO2 powder, as well as the compliance with nuclear fuel specifications and advantages over existing wet processes. The UO2 powder obtained by the suggested process improved fuel pellet properties compared to those derived from the existing wet conversion processes. Powder performance tests revealed that the produced UO2 powder satisfies all specifications required for fuel pellets, including the sintered density, increase in re-sintered density, and grain size. Therefore, the processes described herein can aid realizing a simplified manufacturing process for nuclear-grade UO2 powders that can be used for nuclear power generation.

Effect of CeO2 Coating on the Grain Growth of Cu Particles (CeO2 코팅을 통한 Cu 입자의 입성장 억제 효과에 관한 연구)

  • Yoo Hee-Jun;Moon Ji-Woong;Oh You Keun;Moon Jooho;Hwang Hae Jin
    • Journal of Powder Materials
    • /
    • v.12 no.6 s.53
    • /
    • pp.413-421
    • /
    • 2005
  • Copper is able to work as a current collector under wide range of hydrocarbon fuels without coking in Solid oxide fuel cells (SOFCs). The application of copper in SOFC is limited due to its low melting point, which result in coarsening the copper particle. This work focuses on the sintering of copper powder with ceria coating layer. Ceria-coated powder was prepared by thermal decomposition of urea in $Ce(NO_3)_3\cdot6H_2O$ solution, which containing CuO core particles. The ceria-coated powder was characterized by XRD, ICP, and SEM. The thermal stability of the ceria-coated copper in fuel atmosphere $(H_2)$ was observed by SEM. It was found that the ceria coating layer could effectively hinder the grain growth of the copper particles.

Investigation of Li Dopant as a Sintering Aid for ScSZ Electrolyte for IT-SOFC

  • Mori, Masashi;Liu, Yu;Ma, Shuhua;Hashimoto, Shin-ichi;Takei, Katsuhito
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.760-765
    • /
    • 2008
  • In this study, the effects of small amounts (${\leq}3\;mol%$) of Li doping on the sintering characteristics and electrochemical performance of $(ZrO_2)_{0.89}(ScO_{1.5})_{0.1}(CeO_2)_{0.01}$ (ScSZ) were investigated. By adding 3 mol% lithium, the densification temperature of ScSZ was reduced from the conventional temperature of $1400^{\circ}C$ to $1200^{\circ}C$. It was found that Li doping also led to changes in the Zr:Sc ratio at the grain boundaries. Correspondingly, the dispersion of lithium zirconia at the grain boundaries accelerated the growth of ScSZ grains and increased the grain boundary resistance at temperatures below $450^{\circ}C$. At elevated temperatures of $450{\sim}750^{\circ}C$, the electrical conductivity of the ScSZ after doping remained almost unchanged under air and reducing atmospheres. These results suggest that the addition of lithium is promising for use in low temperature co-firing of ScSZ-based components for intermediate temperature solid oxide fuel cells.

Effect of $Nb_2O_5$ and $UO_2$ Powder Types on Sintered Density and Grain Size of the $UO_2$ Pellet

  • Yoo, Ho-Sik;Kim, Hyung-Soo
    • Nuclear Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.196-200
    • /
    • 1997
  • The variation of sintered density and fain size in ex-AUC, ex-ADU and granulated ex-ADU UO$_2$ pellets in which 0.1~1.0wt% Nb$_2$O$_{5}$ were doped were examined. Pellets were sintered in an atmosphere of H$_2$ at 1$700^{\circ}C$ for 4h. All the specimens tested shooed more than 94% T.D.(Theoretical Density). Sintered density decreased with increasing the amount of Nb$_2$O$_{5}$. Powder types had little influence on the sintered density. Pore size distribution was shifted to the larger ones as Nb$_2$O$_{5}$ was added. The increase of total pore volume and grain growth due to the addition of Nb$_2$O$_{5}$ were thought to be the cause of the sintered density decrease. The largest grain size was seen in the 1. 0wt% Nb$_2$O$_{5}$ doped ex-AUC UO$_2$ pellets. Their average size was 13.9 ${\mu}{\textrm}{m}$.m}$.

  • PDF

A Study on Combustion Characteristics of Non-Circular Grain in Hybrid Rocket for RATO (Rocket-Assisted Take Off) System (RATO(Rocket-Assisted Take Off) 시스템 적용을 위한 하이브리드 로켓 비단공형 연료 그레인 기초 연소특성 연구)

  • Su Jin Kim;Su Han Ko;Sul Hee Kim;Gyeong Mo Kim;Seong Geun Lee;Ye Chan Han;Hee Jang Moon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.4
    • /
    • pp.184-190
    • /
    • 2022
  • In an attempt to apply hybrid rocket to the RATO (Rocket-Assisted Take Off) system, combustion characteristics of the non-circular grain were figured out in this study. Having larger combustion area, it was reconfirmed that the non-circular grain has advantages over regression rate, characteristic velocity and chamber pressure in which all gave higher values. Experiments were performed to understand the effect of the non-circular grain geometry over time where local regression rates depending on grain location were analyzed. It was found that the regression rate of five distinct locations were different. Partial conclusion driven was that these differences are due to the heat transfer caused by dissimilar distances from the flame layer. Besides, as combustion duration increased, the fuel port became circular, and the regression rate converged to a single value over the whole grain.

Trends in Agricultural Waste Utilizatili-zation

  • Han, Youn-Woo
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1979.04a
    • /
    • pp.113.1-113
    • /
    • 1979
  • Each year, vast amount of agricultural crop residues are produced (about 60 percent of the total crop production), which have not been effectively utilized because they are bulky and lignocellulosic, thus having little fuel energy per unit volume. Using treated plant residues as animal feeds could result in an ultimate saving of fossil fuel energy and a more effective utilizat ion of products created by the photosynthetic process. Feeding the residues to animals would decrease the pollution potential, but these residues are difficult for even a ruminant animal to digest. If cellulosic wastes produced from cereal grain straw and wood could be digested, land now used for producing forage add grain cnuld be shifted to food crops for humans. During the past decade, considerable efforts were made to utilize crop residues. These utilization methods can be broadly grouped into for categories: (1) direct uses, (2) mechanical conversions, (3) chemical conversions and (4) biological conversions. Agricultural crop residues consist mainly of cellulose, hemicellulose, lignin, pectin, andother plant carbohydrates. The nature of the constituents of these residues can be best utilized as one of the five FS: Fuel, Fiber, Fertilizer, Feed and Food. Many processes have teen proposed and some are in industrial production stage. However, economics of the process depend on the location where availability of other competitive products are different.

  • PDF

Properties of Chemical Vapor Deposited ZrC coating layer for TRISO Coated Fuel Particle (화학증착법에 의하여 제조된 탄화지르코늄 코팅층의 물성)

  • Kim, Jun-Gyu;Kum, E-Sul;Choi, Doo-Jin;Lee, Young-Woo;Park, Ji-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.10
    • /
    • pp.580-584
    • /
    • 2007
  • The ZrC layer instead of SiC layer is a critical and essential layer in TRISO coated fuel particles since it is a protective layer against diffusion of fission products and provides mechanical strength for the fuel particle. In this study, we carried out computational simulation before actual experiment. With these simulation results, Zirconium carbide (ZrC) films were chemically vapor deposited on $ZrO_2$ substrate using zirconium tetrachloride $(ZrCl_4),\;CH_4$ as a source and $H_2$ dilution gas, respectively. The change of input gas ratio was correlated with growth rate and morphology of deposited ZrC films. The growth rate of ZrC films increased as the input gas ratio decreased. The microstructure of ZrC films was changed with input gas ratio; small granular type grain structure was exhibited at the low input gas ratio. Angular type structure of increased grain size was observed at the high input gas ratio.

Combustion Behavior in a Solid Fuel Ramjet Combustor (고체 램제트 추진기관 연소실에서의 연소 현상)

  • Lee, T. H.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.3
    • /
    • pp.25-30
    • /
    • 1999
  • An experimental investigation was conducted to explore the effects of air mass flux on the combustion efficiency and particle size distributions in a solid fuel ramjet using a fuel grain highly loaded with boron carbide. Particle distributions were measured at the grain exit and at the nozz1e entrance using a Malvern 2600 HSD. Combustion efficiency increased with decreasing air mass flux. In general, the particle distribution was trimodal or quadrimodal with node peaks at approximately 4, 15, and 25$\mu\textrm{m}$ and possibly one at less than 2$\mu\textrm{m}$. The larger particles were the result of surface agglomeration, primarily within the recirculation region. Higher inlet air temperature produced higher combustion efficiencies, apparently the result of enhanced combustion of the larger boron carbide particles that burn in a diffusion controlled regime.

  • PDF

Effects of V and Sb on the Recrystallization of Zr-0.8Sn alloy (Zr-0.8Sn 합금의 재결정에 미치는 V과 Sb의 영향)

  • Gu, Jae-Song;Kim, Jeong-Min;Hong, Sun-Ik;Jeong, Yong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.9 no.10
    • /
    • pp.1000-1005
    • /
    • 1999
  • To investigate the effects of V and Sb on the recrystallization of Zr-0.8Sn alloy, the microstructure of heat-treated specimens was observed by optical microscope, SEM, and TEM. Microhardness tests were also carried out for the annealed specimens. From microstructural studies, the V or Sb additions were found to delay recrystallization process as well as grain growth. Especially, Sb was more effective in delaying the recrystallization. This delay of recrystallization and grain growth by V or Sb additions may be due to the interference in the movement of dislocation and crystal interface by V or Sb precipitates.

  • PDF

Corrosion Behavior of Anode Current Collectors in Molten Carbonate Fuel Cells (용융탄산염 연료전지 Anode부 집전판의 부식특성)

  • Han, Won-Kyu;Ju, Jeong-Woon;Shin, Jung-Cheol;Kang, Sung-Goon;Jun, Joong-Hwan;Lim, Hee-Chun
    • Korean Journal of Materials Research
    • /
    • v.18 no.5
    • /
    • pp.259-265
    • /
    • 2008
  • The corrosion and degradation factors of a current collector in a molten carbonate fuel cell (MCFC) were investigated to determine the optimized coating thickness of nickel on STS316L. The results show that the surface morphology and electrical properties depended on the nickel coating thickness. The surface morphology gradually changed from a flat to a porous structure along as the nickel coating thickness decreased, and the electrical resistance of the nickel-coated STS316L increased as the nickel coating thickness decreased. This can be attributed to the diffusion of elements of Fe and Cr from the substrate through the nickel grain boundaries. Additionally, carburization in the metal grains or grain boundaries in an anodic environment was found to influence the electrical properties due to matrix distortion. The resistance of Cr-oxide layers formed in an anodic environment causes a drop in the potential, resulting in a decrease in the system efficiency.