• 제목/요약/키워드: Fuel Concentration Gradient

검색결과 28건 처리시간 0.023초

연료희석이단면확대채널에형성된삼지화염의전파속도에미치는영향에관한실험적연구 (An Experimental Study on the Effect of Fuel Dilution on the Propagation Velocity of Triple Flames in a Diverging Channel)

  • 서정일;신현동;김남일
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2007년도 제34회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.13-18
    • /
    • 2007
  • When triple flames propagated in a diverging channel, the effects of fuel dilution on the lift-off characteristics of triple flames were investigated. A multi-slot burner was used to stabilize the lift-off flame especially at weak fuel concentration gradients. It was reported that there is a maximum propagation velocity at a critical concentration gradient in an open jet regardless of fuel dilution. The enhancement of a diffusion flame affected to increase the propagation velocity around critical concentration gradients. However, the influence of a confined channel on the structure of triple flames according to fuel dilution needs to be investigated compared with an open jet case. This study aimed to examine the effect of a confined channel on the structure and the propagation velocity of the triple flames according to fuel dilution. Lift-off height and propagation velocity of triple flames were investigated by employing three kinds of fuel compositions diluted by nitrogen (0%, 25%, 50% $N_2$), Fuel dilution reduced the propagation velocity of triple flame in a confined channel mainly due to the decrease of flame temperature in premixed branch. Despite the difference in fuel dilution, the propagation velocity has a maximum value at a specific fuel concentration gradient even though the critical concentration gradient increases with fuel dilution. And the critical concentration gradient in a confined channel is larger than that in an open jet due to enhancement of convective diffusion.

  • PDF

Characteristics of Propagating Tribrachial Flames in Counterflow

  • Ko, Young-Sung;Chung, Tae-Man;Chung, Suk-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제16권12호
    • /
    • pp.1710-1718
    • /
    • 2002
  • The effect of fuel concentration gradient on the propagation characteristics of tribrachial (or triple) flames has been investigated experimentally in both two-dimensional and axisymmetric counterflows. The gradient at the stoichiometric location was controlled by the equivalence ratios at the two nozzles; one of which is maintained rich, while the other lean. Results show that the displacement speed of tribrachial flames in the two-dimensional counterflow decreases with fuel concentration gradient and has much larger speed than the maximum speed predicted previously in two-dimensional mixing layers. From an analogy with premixed flame propagation, this excessively large displacement speed can be attributed to the flame propagation with respect to burnt gas. Corresponding maximum speed in the limit of small mixture fraction gradient was estimated and the curvefit of the experimental data substantiates this limiting speed. As mixture fraction gradient approaches zero, a transition occurs, such that the propagation speed of tribrachial flame approaches stoichiometric laminar burning velocity with respect to burnt gas. Similar results have been obtained for tribrachial flames propagating in axisymmetric counterflow.

대향류 유동장에서 삼지 화염 전파 특성에 관한 연구 (Characteristics of Propagating Tribrachial Flames in Counterflow)

  • 정태만;고영성;정석호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.422-427
    • /
    • 2000
  • Propagation characteristics of tribrachial flames have been investigated experimentally in both two-dimensional and axisymmetric counterflows. Mixture fraction gradient at stoichiometric location is controlled by varying equivalence ratios at the two nozzles, one of which maintains rich while the other lean premixture. Tribrachial flames propagating through these mixtures are investigated. The propagation speed of tribrachial flames in two-dimensional counterflow decreases with fuel concentration gradient and has much higher speed than the maximum speed predicted previously in two-dimensional mixing layers. From an analogy with premixed flame propagation, this excessively large propagation speed can be attributed to the tribrachial flame propagating with respect to burnt gas. Corresponding maximum speed in the limit of small mixture fraction gradient is estimated and extrapolated experimental results substantiate this limiting speed. As mixture fraction gradient approaches zero, a transition in propagation characteristics occurs, such that the propagation speed of tribrachial flame approaches stoichiometric laminar burning velocity with respect to burnt gas. Similar behavior has been obtained for tribrachial flames propagating in axisymmetric counterflow.

  • PDF

좁은 채널 내부의 수직 혼합 경계층에 형성된 메탄-공기 에지-화염의 안정화 기초 실험 (A Fundamental Experiment on the Stabilization of a Methane-Air Edge Flame in a Cross-Flowing Mixing Layer in a Narrow Channel)

  • 이민정;김남일
    • 대한기계학회논문집B
    • /
    • 제33권7호
    • /
    • pp.527-534
    • /
    • 2009
  • Flame stabilization characteristics were experimentally investigated in a fuel-air cross flowing mixing layer. A combustor consists of a narrow channel of air steam and a cross flowing fuel. Depending on the flow rates of methane and air, flame can be stabilized in two modes. First is an attached flame which is formulated at the backward step where the methane and air streams meet. Second is a lifted-flame which is formulated within the mixing layer far down steam from backward step. The heights and flame widths of the lifted flames were measured. Flame shapes of the lifted flames were similar to an ordinary edge flame or a tribrachial flame, and their behavior could be explained with the theories of an edge flame. With the increase of the mixing time between fuel and air, the fuel concentration gradient decreases and the flame propagation velocity increases. Thus the flame is stabilized where the flow velocity is matched to the flame propagation velocity in spite of a significant disturbance in the fuel mixing and heat loss within the channel. This study provides many experimental results for a higher fuel concentration gradient, and it can also be helpful for the development and application of a smaller combustor.

고온 미소농도구배 조건에서의 에지화염 강도 변화에 관한 실험적 기초 연구 (Basic Experimental Study of the Edge-Flame Intensity Variation at High Temperature and with Small Fuel-Concentration Gradient)

  • 이민정;김남일
    • 대한기계학회논문집B
    • /
    • 제35권6호
    • /
    • pp.633-640
    • /
    • 2011
  • 본 연구에서는 고온의 미소농도구배 조건에서의 에지화염의 안정화 및 화염 강도 변화를 실험적으로 관찰하였다. 실험 연소기는 크게 혼합기가 투입되는 슬롯과 석영 채널 및 채널 내부 가열을 위한 추가적인 예혼합 연소기로 구성되어 있다. 실험의 정확성을 위해 각 경계 조건에 대한 정량적인 검증 절차가 수행되었다. 결론적으로 연료 농도 구배의 정량적인 제어와 질소 희석비율을 조절하여 고온의 조건에서도 에지화염을 임의의 위치에 안정화 시킬 수 있었다. 에지화염 내부에 존재하는 확산화염의 화염 강도가 채널 내부의 온도증가에 따라 증가하고 질소의 희석비율 증가에 따라 감소하는 것을 보였다. 연료에 따른 화염 강도 변화를 살펴본 결과 프로판의 경우가 메탄에 비해 강도 변화율이 큰 것을 알 수 있었다.

수소연료 생산의 효율향상을 위한 초음파응용에 관한 연구(용액과 농도 중심으로) (A Study on the Ultrasonic Application for the Efficiency Elevation of the Hydrogen Fuel Production (On solution and concentration))

  • 송민근;이상범;손승우;주은선
    • 한국수소및신에너지학회논문집
    • /
    • 제12권2호
    • /
    • pp.129-136
    • /
    • 2001
  • An investigation on the A/V(ampere/volt) gradient according to the concentration and the kind of solution in a electrolyzer is carried out to obtain the basic data on the ultrasonic application for the efficiency elevation of the hydrogen fuel production. KOH is selected as an electrolyte and concentrations are 0%, 10%, 20% and 30%. The solutions are city water, city water with nitrogen. distilled water and distilled water with nitrogen. The Electrochemical analyzer(BAS Co.) is used as a measuring device to observe the A/V gradient. And the limit of volt is from -3000mV to +3000mV. The 28kHz magnetic transducer is selected to give them ultrasonic forcing. In results, it is clarified that ultrasonic influences the A/V gradient in the electrolytic solution.

  • PDF

비예혼합 대향류 화염에서 $CO_2$ 첨가가 화염 구조에 미치는 영향 연구 (An Effects of $CO_2$ Addition on Flame Structure in a Non-premixed Counterflow Flame)

  • 이기만
    • 한국자동차공학회논문집
    • /
    • 제15권3호
    • /
    • pp.166-173
    • /
    • 2007
  • A numerical study was conducted to have the effect of $CO_2$ addition to fuel on the chemical reaction mechanism with the change of the initial concentration of $CO_2$ and the axial velocity gradient. From this study, it was found that there were two serious effects of $CO_2$ addition on a non-premixed flame ; a diluent effect by the reactive species reduction and chemical effect of the breakdown of $CO_2$ by the third-body collision and thermal dissociation. Especially, the chemical effect was serious at the lower velocity gradient of the axial flow. It was certain that the mole fraction profile of $CO_2$ was deflected and CO was increased with the initial concentration of $CO_2$. It was also ascertained that the breakdown of $CO_2$ would cause the increasing of CO mole fraction at the reaction region. It was also found that the addition of $CO_2$ did not alter the basic skeleton of $H_2-O_2$ reaction mechanism, but contributed to the formation and destruction of hydrocarbon products such as HCO. The conversion of CO was also suppressed and $CO_2$ played a role of a dilution in the reaction zone at the higher axial velocity gradient.

부력을 최소화한 대향류 확산화염 소화거동에서 연료농도구배의 영향 (Influence of Fuel concentration gradient on the Extinction Behavior in Buoyancy minimized Counterflow Diffusion Flame)

  • 박진욱;박정;윤진한;길상인
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.379-381
    • /
    • 2014
  • Influence of fuel concentration gradient was investigated near flame extinction limit in buoyancy-suppressed non-premixed counterflow flame with triple co-flow burner. The use of He curtain flow produced a microgravity level of $10^{-2}-10^{-3}g$ in He-diluted non-premixed counter triple co-flow flame experiments. Flame stability map was presented based on flame extinction and oscillation near extinction limit. The stability map via critical diluent mole fraction with global strain rate was represented by varying outer and inner He-diluted mole fractions. The flame extinction modes could be classified into five: an extinction through the shrinkage of the outmost edge flame forward the flame center with and without self-excitation, respectively ((I) and (II)), an extinction via the rapid expansion of a flame hole while the outmost edge flame is stationary (III), both the outermost and the center edge flames oscillate, and then a donut shaped flame is formed or the flame is entirely extinguished (IV), a shrinkage of the outermost edge flame without self-excitation followed by shrinking or sustain the inner flame (V).

  • PDF

CANDU 압력관의 블리스터 성장 예측을 위한 유한요소 수소 확산 해석 (Finite Element Analysis of Hydrogen Concentration for Blister Growth Estimation of CANDU Pressure Tube)

  • 허남수;김윤재;김영석;정용무;김영진
    • 대한기계학회논문집A
    • /
    • 제28권2호
    • /
    • pp.189-195
    • /
    • 2004
  • The pressure tubes, which contain high temperature heavy water and fuel, are within the core of a CANDU nuclear reactor, and are thus subjected to high stresses, temperature gradient, and neutron flux. Further, it is well known that pressure tubes of cold-worked Zr-2.5Nb materials result in hydrogen diffusion, which create fully-hydrided regions (frequently called Blister). Thus a proper investigation of hydrogen diffusion within zirconium-alloy nuclear components, such as CANDU pressure tube and fuel channels is essential to predict the structural integrity of these components. In this respect, this paper presents numerical investigation of hydrogen diffusion to quantify the hydrogen concentration fur blister growth of CANDU pressure tube. For this purpose, coupled temperature-hydrogen diffusion analyses are performed by means of two-dimensional finite element analysis. Comparison of predicted temperature field and blister with published test data shows good agreement.

Analysis of Characteristics of Spent Fuels on Long-Term Dry Storage Condition

  • Yoon, Suji;Park, Kwangheon;Yun, Hyungju
    • 방사성폐기물학회지
    • /
    • 제19권2호
    • /
    • pp.205-214
    • /
    • 2021
  • Currently, the interim storage pools of spent fuels in South Korea are expected to become saturated from 2024. It is required to prepare an operation plan of a domestic dry storage facility during a long-term period, with the researches on safety evaluation methods. This study modified the FRAPCON code to predict the spent fuel integrity evaluation such as the axial cladding temperature, the hoop stress and hydrogen distribution in dry storage. The cladding temperature in dry storage was calculated using the COBRA-SFS code with the burnup information which was calculated using the FRAPCON code. The hoop stress was calculated using the ideal gas equation with spent fuel information such as rod internal pressure. Numerical analysis method was used to calculate the degree of hydrogen diffusion according to the hydrogen concentration and temperature distribution during a dry storage period. Before 50 years of dry storage, the cladding temperature and hoop stress decreased rapidly. However, after 50 years, they decreased gradually and the cladding temperature was below 400 K. The initial temperature distribution and hydrogen concentration showed a parabolic line, but hydrogen was transferred by the hydrogen concentration and temperature gradient over time.