• Title/Summary/Keyword: Fuel Cell Temperature

Search Result 932, Processing Time 0.027 seconds

Preparation and Properties of Sulfonated Poly(ether ether ketone) (SPEEK) Electrospun Nanofibrous Ion-exchange Membrane for PEMFC (PEMFC용 설폰화 Poly(ether ether ketone) (SPEEK) 전기방사 나노섬유 이온교환막의 제조 및 특성)

  • Kwak, Noh-Seok;Choi, Eun-Jung;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.155-162
    • /
    • 2012
  • Sulfonated poly(ether ether ketone) (SPEEK) nanofibers were prepared by electrospinning. The nanofibrous membrane for polymer electrolyte membrane fuel cell (PEMFC) was fabricated by compression molding. The maximum degree of sulfonation was 95% and the initial thermal degradation temperature was $280^{\circ}C$ and it's value was lower than that of PEEK. The contact angle of SPEEK increased with decreasing the degree of sulfonation. The optimum voltage, flow rate, tip to collector distance (TCD) and concentration of electrospinning conditions were 22 kV, 0.3 mL/hr, 15 cm, and 23 wt%, respectively. The average nanofibrous diameter was 47.6 nm. The water uptake and ion exchange capacity of SPEEK nanofibrous membrane increased with increasing the sulfonation time and the amount of sulfonating agent. The electrical resistance and proton ionic conductivity of SPEEK membrane increased with decreasing and increasing the sulfonation time, respectively. Their values were 0.58~0.06 ${\Omega}{\cdot}cm^2$and 0.099 S/cm.

Hydrogen Electrode Performance with PTFE Bonded Raney Nickel Catalyst for Alkaline Fuel Cell (라니 니켈 촉매에 대한 알칼리형 연료전지용 수소극의 전극특성)

  • Lee, Hong-Ki;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.3 no.3
    • /
    • pp.527-534
    • /
    • 1992
  • Raney nickel was used as catalyst in the hydrogen electrode for an alkaline fuel cell. The hydrogen electrode manufactured with the Raney nickel catalyst which was sintered at $700^{\circ}C$ was found to have the highest electrode performance. Using the Raney nickel powder of average particle size $90{\AA}$ for the electrode, the current density which had been measured was $450mA/cm^2$ at $80^{\circ}C$ using 6N KOH solution as an electrolyte. The effects of PTFE addition were investigated with CO-chemisorption, polarization curves and Tafel slope. CO-chemisorption had shown the optimum value when the Raney nickel was mixed with 5wt% of PTFE, but from the current density and Tafel slope at porous Raney nickel electrode, the appropriate value of PTFE addition was 10wt%. Recommendable Ni and Al portion for Raney nickel was 60 : 40 and loading amount was $0.25g/cm^2$. Also the influence of pressing pressure for manufacturing catalytic layer and for junction with gas diffusion layer was examined. The morphology of catalyst surface was investigated with SEM. The influence of reactivation time and heat-treatment temperature were also studied.

  • PDF

Densification Study of K+-beta-aluminas Prepared from Their Ultra-fine Milled Powder (초미세 분쇄 분말로 제조된 K+-beta-aluminas의 치밀화 연구)

  • Shin, Jae-Ho;Kim, Woo-Sung;Lim, Sung-Ki
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.648-652
    • /
    • 2005
  • A super ionic conductor, $K^+$-beta-aluminas, which is known to be difficult to obtain in the form of dense sintered density under atmospheric pressure, was pulverized to 350 nm mean particle size using attrition mill. The sample were pressed into tablet form by uniaxial pressing. The specimen was sintered under atmospheric pressure in powder form. Sintering temperature range was $1400^{\circ}C$ to $1650^{\circ}C$ at $50^{\circ}C$ intervals. Additionally, zone sintering was carried out to control the growth grain at high temperature ($1600^{\circ}C$). The density of specimens that were sintered at $1600^{\circ}C$ and $1650^{\circ}C$, and sintered at $1600^{\circ}C$ by zone sintering were about 93% and 95%, respectively. In the case of the lengthened sintering time to 2 h, the density of specimen was reduced to lower than 90%, since the particles were grown to the duplex microstructure.

Performance Analysis of Hybrid SOFC/Uncooled GT System for Marine Power Applications (선박동력용 SOFC/GT(무냉각) 하이브리드시스템의 성능 평가)

  • Kim, Myoung-Hwan;Kil, Byung-Lea
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1050-1060
    • /
    • 2012
  • As an approach to high-efficiency of SOFC system, SOFC/GT Hybrid system is effective. However, if the output size of the system belongs to the marine class of dozens MWs, the introduction of the cooling system of GT system, which is used as sub-system, makes its related devices complicated and also makes its control difficult. Accordingly, for the marine use, SOFC/GT (non-cooling)Hybrid system looks more suitable than SOFC/GT(cooling)Hybrid system. This study established the SOFC/GT (non-cooling)Hybrid system, and examined the operating temperature & current density of the stack for the system, pressure ratio of the gas turbine, the influence of TIT(Turbine Inlet Temperature) on system performance, etc. through the simulation process. Through this research process, this study was able to confirm that electrical efficiency rises in spite of the increase in the required power for the air compressor, and there exists a limited range of temperatures for operation in TIT.

Recovery of Zirconium from Spent Pickling Acid through Precipitation Using BaF2 and Electrowinning in Fluoride Molten Salt (BaF2 침전 및 불화물 용융염 전해 제련을 통한 폐 산세액 내 지르코늄 회수)

  • Han, Seul Ki;Nersisyan, Hayk H.;Lee, Young Jun;Choi, Jeong Hun;Lee, Jong Hyeon
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.681-687
    • /
    • 2016
  • Zirconium(Zr) nuclear fuel cladding tubes are made using a three-time pilgering and annealing process. In order to remove the oxidized layer and impurities on the surface of the tube, a pickling process is required. Zr is dissolved in HF and $HNO_3$ mixed acid during the process and pickling waste acid, including dissolved Zr, is totally discarded after being neutralized. In this study, the waste acid was recycled by adding $BaF_2$, which reacted with the Zr ion involved in the waste acid; $Ba_2ZrF_8$ was subsequently precipitated due to its low solubility in water. It is very difficult to extract zirconium from the as-recovered $Ba_2ZrF_8$ because its melting temperature is $1031^{\circ}C$. Hence, we tried to recover Zr using an electrowinning process with a low temperature molten salt compound that was fabricated by adding $ZrF_4$ to $Ba_2ZrF_8$ to decrease the melting point. Change of the Zr redox potential was observed using cyclic voltammetry; the voltage change of the cell was observed by polarization and chronopotentiometry. The structure of the electrodeposited Zr was analyzed and the electrodeposition characteristics were also evaluated.

Fabrication of Crystalline $ZrO_2$ Nanotubes by ALD

  • Kim, Hyeon-Cheol;Panda, Sovan K.;Yu, Hyeon-Jun;Kim, Myeong-Jun;Yang, Yun-Jeong;Lee, Seon-Hui;Sin, Hyeon-Jeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.241.1-241.1
    • /
    • 2011
  • Numerous possible applications for $ZrO_2$ nanotubes exist such as for catalyst support structures, for sensing or for applications as a solid state electrolyte. Especially, because of a large specific surface area, high efficiency for solid oxide fuel cell (SOFC) application at low temperature can be expected for nanotublar structures in even small size. A zirconium precursor, Tetrakis (ethylmethylamino) zirconium, TEMAZr and $H_2O$ oxidant were used to deposit$ZrO_2$ thin films on an anodized aluminum oxide (AAO) templates having sub-100nm cylindrical pores by atomic layer deposition (ALD) in the temperature range of 150~250$^{\circ}C$. The crystalline structures of as-prepared and post-annealed $ZrO_2$ nanotubes were characterized by x-ray diffraction and high-resolution transmission electron microscopy. The as-prepared samples at $150^{\circ}C$ and $200^{\circ}C$ were showed amorphous, whereas a mixed phase of tetragonal, monoclinic and amorphous polymorph was observed at $250^{\circ}C$. In the bulk, zirconia remains monoclinic phase up to $1,175^{\circ}C$, however, $ZrO_2$ nanotubes were showed tetragonal phase upon post thermal treatments merely at $400^{\circ}C$. This trend may be indicative of high-curvature surfaces of nanotubes and thereby the presence of intrinsic compressive strain. The amount of amorphous structures in the mixed phase as well as as-grown $ZrO_2$ nanotubes were also gradually decreased by subsequent heat treatment.

  • PDF

A Characterization Study on Nafion$^{(R)}$/$ZrO_2-TiO_2$ Composite Membranes for PEMFC Operation at High Temperature and Low Humidity (고온/저가습 PEMFC 운전을 위한 Nafion$^{(R)}$/$ZrO_2-TiO_2$ 복합 전해질 막의 특성 연구)

  • Park, Ki-Tae;Chun, Jeong-Hwan;Choi, Dong-Woong;Kim, Sung-Hyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.1
    • /
    • pp.60-68
    • /
    • 2011
  • [ $ZrO_2-TiO_2$ ]binary oxides with various Zr:Ti molar ratios were prepared by sol-gel method and Nafion$^{(R)}$/$ZrO_2-TiO_2$ composite membranes were fabricated for proton exchange membrane fuel cells (PEMFCs) at high temperature and low humidity. Water uptake, Ion exchange capacity (IEC), and proton conductivity of Nafion$^{(R)}$/$ZrO_2-TiO_2$ composite membranes were characterized and these composite membranes were tested in a single cell at $120^{\circ}C$ with various relative humidity (R.H.) conditions. The obtained results were compared with the unmodified membranes (Nafion$^{(R)}$ 112 and Recast Nafion$^{(R)}$). A Nafion$^{(R)}$/$ZrO_2-TiO_2$ composite membrane with 1:3 of Zr:Ti molar ratio showed the highest performance. The performance showed 500 mW/$cm^2$ (0.499V) at $120^{\circ}C$, 50% R. H., and 2 atm.

A Study on the Synthesis of Gd-doped $CeO_2$ and Sr-doped $LaMnO_3$ Powders and Phase Stability in Their Interface (Gd-doped $CeO_2$ 와 Sr-doped $LaMnO_3$ 분말의 합성 및 그 계면에서의 상 안정성 연구)

  • 정승훈;김남진;이덕열
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.6
    • /
    • pp.652-658
    • /
    • 1997
  • The phase stability in the interface of Sr-doped LaMnO3(LSM)/Gd-doped CeO2(CGO) was examined in this study in order to check the feasibility of using LSM as the cathode material in a low-temperature SOFC(solid oxide fuel cell) using CGO as the electrolyte. For the purpose, CGO powders of Ce0.82Gd0.18O0.91 and two LSM powders having different compositions, La0.9Sr0.1MnO3(LSM10) and La0.5Sr0.5MnO3(LSM50), were synthesized using Pechini method. Then, specimens having the LSM/CGO interface were prepared, heat-treated at 130$0^{\circ}C$ for up to 3 days, and analyzed by XRD and STEM/EDX. Face-centered cubic CGO powders of less than 10 nm size were obtained by calcination of polymeric precursor formed in the process at 45$0^{\circ}C$. Higher calcination temperature of $700^{\circ}C$ was necessary for monoclinic LSM10 and cubic LSM50 powders. LSM powders were coarser than CGO and observed to be in the range of 50~100 nm. No trace of LSM-CGO interaction product was found in the XRD pattern. Also it was known from the concentration profile in the vicinity of the interface that interdiffusion was occurred over only a small penetration depth of ~100 nm order.

  • PDF

Optimization Condition of Astaxanthin Extract from Shrimp Waste Using Response Surface Methodology (반응 표면 분석법을 사용한 새우껍질에서 astaxanthin 추출 조건의 최적화)

  • Yoon, Chang Hwan;Bok, Hee Sung;Choi, Dae Ki;Row, Kyung Ho
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.545-550
    • /
    • 2012
  • A 17-run Box-Behnken design (BBD) was used to optimize the extraction conditions of astaxanthin from shrimp waste. Three factors such as ratio of ethanol to raw material, extraction temperature ($^{\circ}C$) and extraction time (min) were investigated. The adjusted coefficient of determination ($R^2{_{adj}}$) for the model was 0.9218, and the probability value (p=0.0003) demonstrated a high significance for the regression model. The optimum extraction conditions were found to be: optimized ratio of ethanol to raw material 29.7, extraction temperature $49.5^{\circ}C$ and extraction time 59.9 min. Under these conditions, the mean extraction yield of astaxanthin was $17.80{\mu}g/g$, which was in good agreement with the predicted model value. Under these conditions, validation experiments were done and the mean extraction yield of astaxanthin was $17.77{\mu}g/g$, which is in good agreement with the predicted model value.

Cross-linking of Acid-Base Composite Solid Polymer Electrolyte Membranes with PEEK and PSf (산-염기형 PEEK와 PSf를 이용한 고체 고분자전해질 복합막의 가교화)

  • Jang, In-Young;Jang, Doo-Young;Kwon, Oh-Hwan;Kim, Kyoung-Eon;Hwang, Gab-Jin;Sim, Kyu-Sung;Bae, Ki-Kwang;Kang, An-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.2
    • /
    • pp.149-157
    • /
    • 2006
  • Hydrogen as new energy sources is highly efficient and have very low environmental emissions. The proton exchange membrane fuel cell (PEMFC) is an emerging technology that can meet these demands. Therefore, the preparation of stable polymeric membranes with good proton conductivity and durability are very important for hydrogen production via water electrolysis with PEM at medium temperature above $80^{\circ}C$. Currently Nafion of Dupont and Aciflex of Asahi, etc., solid polymer electrolytes of perfluorosulfonic acid membrane, are the best performing commercially available polymer electrolytes. However, these membrane have several flaws including its high cost, and its limited operational temperature above $80^{\circ}C$. Because of this, significant research efforts have been devoted to the development of newer and cheaper membranes. In order to make up for the weak points and to improve the mechanical characteristics with cross -linking, acid-base complexes were prepared by the combination PSf-co-PPSS-$NH_2$ with PEEK-$SO_3H$. The results showed that the proton conductivity decreased in 17.6% and 40% but tensile strength increased in 78% and 98%, about $20.65\;{\times}\;10^6N/m^2$, in comparison with SBPSf/HPA and SPEEK/HPA complex membrane.