DOI QR코드

DOI QR Code

Optimization Condition of Astaxanthin Extract from Shrimp Waste Using Response Surface Methodology

반응 표면 분석법을 사용한 새우껍질에서 astaxanthin 추출 조건의 최적화

  • Yoon, Chang Hwan (Department of Chemical Engineering, Inha University) ;
  • Bok, Hee Sung (Department of Chemical Engineering, Inha University) ;
  • Choi, Dae Ki (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • Row, Kyung Ho (Department of Chemical Engineering, Inha University)
  • 윤창환 (인하대학교 화학공학과) ;
  • 복희성 (인하대학교 화학공학과) ;
  • 최대기 (한국과학기술연구원 연료전지센터) ;
  • 노경호 (인하대학교 화학공학과)
  • Received : 2011.11.17
  • Accepted : 2012.01.06
  • Published : 2012.06.01

Abstract

A 17-run Box-Behnken design (BBD) was used to optimize the extraction conditions of astaxanthin from shrimp waste. Three factors such as ratio of ethanol to raw material, extraction temperature ($^{\circ}C$) and extraction time (min) were investigated. The adjusted coefficient of determination ($R^2{_{adj}}$) for the model was 0.9218, and the probability value (p=0.0003) demonstrated a high significance for the regression model. The optimum extraction conditions were found to be: optimized ratio of ethanol to raw material 29.7, extraction temperature $49.5^{\circ}C$ and extraction time 59.9 min. Under these conditions, the mean extraction yield of astaxanthin was $17.80{\mu}g/g$, which was in good agreement with the predicted model value. Under these conditions, validation experiments were done and the mean extraction yield of astaxanthin was $17.77{\mu}g/g$, which is in good agreement with the predicted model value.

최적의 추출조건을 찾는데 매우 유용한 방법인 반응 표면 분석법(RSM, response surface methodology)을 사용하여 새우껍질로부터 astaxanthin 추출조건을 최적화하였다. 추출조건은 용매 에탄올과 추출물질의 비율, 추출온도($^{\circ}C$), 추출시간(min)의 세가지 독립변수를 설정하여 BBD (Box-Behnken design) 방법을 이용하였다. 이 BBD 모델링은 0.9218의 $R^2{_{adj}}$값과 0.0003의 확률 값 p 값으로 회귀 모델에 대한 신뢰도를 입증하였다. RSM 분석을 통해 찾아낸 새우껍질로부터 astaxanthin의 최적 추출조건은 에탄올 용매비 1:29.7, 추출온도 $49.5^{\circ}C$, 추출시간 59.9 분이고, 이 때 astaxanthin 추출량은 $17.80{\mu}g/g$으로 예측하였다. 최적 수율로 예측된 결과는 각각의 조건에 따른 실험을 통해 그 예측의 정확도를 확인하였으며 $17.77{\mu}g/g$으로 예측조건과 비슷한 결과를 보였다.

Keywords

Acknowledgement

Supported by : 한국연구재단(NRF)

References

  1. Shimidzu, N., Goto, M. and Miki, W., "Carotenoids as Singlet Oxygen Quenchers in Marine Organisms," Fisheries Sci., 62, 134-137(1996).
  2. Hong, S. P., Kim, M. H. and Hwang, J. K., "Biological Functions and Production Technology of Carotenoids," J. Kor. Soc. Food Sci. Nutr., 27, 1297-1306(1998).
  3. During, A., Nagao, A. and Terao, J., "${\beta}$-Carotene 15,15'dioxy-Genase Activity and Cellular Retinol-Binding Protein Type II Level are Enhanced by Dietary Unsaturated Triacylglycerols in Rat Intestines," J. Nutr., 128, 1614-1619(1998).
  4. Naguib, Y. M., "Antioxidant Activities of Astaxanthin and Related Carotenoids," J. Agric. Food Chem., 48, 1150-1154(2000). https://doi.org/10.1021/jf991106k
  5. Nakagawa, K., Kang, S. D., Park, D. K., Handelman, G. J. and Miyazawa, T., "Inhibition by -Carotene and Astaxanthin of NADpH-Dependent Microsomal Phospholipid Peroxidation," J. Nutr. Sci. Vitaminol, 43, 345-355(1997). https://doi.org/10.3177/jnsv.43.345
  6. Chew, B. P., Park, J. S., Wong, M. W. and Wong, T. S., "A Comparison of the Anticancer Activities of Dietary ${\beta}$-Carotene, Canthaxanthin and Astaxanthin in Mice in vivo," Anticancer Res., 19, 1849-1854(1999).
  7. Jyonouchi, H., Sun, S., Iijima, K. and Gross, M. D., "Antitumor Activity of Astaxanthin and Its Mode of Action," Nutr. Cancer, 36, 59-65(2000). https://doi.org/10.1207/S15327914NC3601_9
  8. Kistler, A. Liechti, H. Pichard, L., Wolz, E., Oesterhelt, G., Hayes, A. and Maurel, P., "Metabolism and CYP-Inducer Properties of Astaxanthin in Man and Primary Human Hepatocytes," Arch. Toxicol., 75, 665-675(2002). https://doi.org/10.1007/s00204-001-0287-5
  9. Kurihara, H., Koda, H., Asami, S., Kiso, Y. and Tanaka, T., "Contribution of the Antioxidative Property of Astaxanthin to Its Protective Effect on the Promotion of Cancer Metastasis in Mice Treated with Restraint Stress," Life Sci., 70, 2509-2520(2002). https://doi.org/10.1016/S0024-3205(02)01522-9
  10. Bendich, A., "Non Vitamin a Activity of Carotenoids: Immune Enhancement," Food Sci. Technol. Res., 2, 127-130(1991). https://doi.org/10.1016/0924-2244(91)90648-3
  11. Tomita, Y., Jyonouchi, H., Engelman, R. W., Day, N. K. and Good, R. A., "Preventive Action of Carotenoids on the Development of Lymphadenopathy and Proteinuria in MRL-lpr/lpr Mice," Autoimmunity, 16, 95-102(1993). https://doi.org/10.3109/08916939308993316
  12. Jyonouchi, H., Zhang, L. and Tomita, Y., "Studies of Immuno-modulating Actions of Carotenoids. II. Astaxanthin Enhances in Vitro Antibody Production to T-Dependent Antigens Without Facilitating Polyclonal B-Cell Activation," Nutr. Cancer., 19, 269-280(1993). https://doi.org/10.1080/01635589309514258
  13. Kritchevsky, S. B., "Beta-carotene, Carotenoids and the Prevention of Coronary Heart Disease," J. Nutr., 129, 5-8(1999).
  14. Aghdassi, E. and Allard, J. P., "Breath Alkanes as a Marker of Oxidative Stress in Different Clinical Conditions," Free Radic. Biol. Med., 28, 880-886(2000). https://doi.org/10.1016/S0891-5849(00)00189-1
  15. O'Connor, I. and O'Brien, N., "Modulation of UVA Light-induced Oxidative Stress by Beta-Carotene, Lutein and Astaxanthin in Cultured Fibroblasts," J. Dermatol. Sci., 16, 226-230(1998). https://doi.org/10.1016/S0923-1811(97)00058-3
  16. Jacques, P. F., "The Potential Preventive Effects of Vitamins for Cataract and Age-Related Macular Degeneration," Int. J. Vitam. Nutr. Res., 69, 198-205(1999). https://doi.org/10.1024/0300-9831.69.3.198
  17. Lyle, B. J., Mares-Perlman, J. A., Klein, B. E., Klein, R. and Greger, J. L., "Antioxidant Intake and Risk of Incident Age-related Nuclear Cataracts In the Beaver Dam Eye Study," Am. J. Epidemiol., 149, 801-809(1999). https://doi.org/10.1093/oxfordjournals.aje.a009895
  18. Gradelet, S., Le Bon, A. M., Berqes, R., Suschetet, M. and Astorq, P., "Dietary Carotenoids Inhibit Aflatoxin B1-Induced Liver," Carcinogenesis, 19, 403-411(1998). https://doi.org/10.1093/carcin/19.3.403
  19. Chen, X., Chen, R., Guo, Z. and Li, P., "The Preparation and Stability of the Inclusion Complex of Astaxanthin with ${\beta}$-Cyclo-Dextrin," Food Chem., 101, 1580-1584(2007). https://doi.org/10.1016/j.foodchem.2006.04.020
  20. Schroeder, W. A. and Johnson, E. A., "Antioxidant Role of Carotenoids in Phaffia Rhodozyma," J. Gen. Microbiol., 39, 907-912(1993).
  21. Zhu, T., Heo, H. J. and Row, K. H., "Optimization of Crude Polysaccharides Extraction from Hizikia Fusiformis Using Response Surface Methodology," Carbohydr. Polym., 82, 106-110(2010). https://doi.org/10.1016/j.carbpol.2010.04.029
  22. Aleboyeh, A., Daneshvar, N. and Kasiri, M. B., "Optimization of C.I. Acid Red 14 Azo Dye Removal by Electrocoagulation Batch Process with Response Surface Methodology," Chem. Eng. and Proc., 47, 827-832(2008). https://doi.org/10.1016/j.cep.2007.01.033

Cited by

  1. Comparison of Sampling and Estimation Methods for Economic Optimization of Cumene Production Process vol.52, pp.5, 2014, https://doi.org/10.9713/kcer.2014.52.5.564
  2. Optimization of Medium for Protease Production by Enterobacteriaceae sp. PAMC 25617 by Response Surface Methodology vol.53, pp.4, 2015, https://doi.org/10.9713/kcer.2015.53.4.524
  3. Optimization of Extraction of Marker Compounds from Red Ginsengs by Accelerated Solvent Extraction Using Response Surface Methodology vol.45, pp.8, 2016, https://doi.org/10.3746/jkfn.2016.45.8.1162
  4. Optimizing Coagulation Conditions of Magnetic based Ballast Using Response Surface Methodology vol.39, pp.12, 2017, https://doi.org/10.4491/KSEE.2017.39.12.689
  5. 이온성 액체를 사용한 꽃게 껍질에서 아스타크산틴 추출 조건의 최적화 vol.28, pp.4, 2012, https://doi.org/10.7841/ksbbj.2013.28.4.238
  6. 반응표면분석법을 이용한 터널폐수 응집-혼화 공정의 주요인자 영향 분석 및 최적화 vol.28, pp.5, 2012, https://doi.org/10.11001/jksww.2014.28.5.601
  7. 반응표면분석을 이용한 패류의 부영양수 유기물 제어능 연구 vol.47, pp.4, 2012, https://doi.org/10.11614/ksl.2014.47.4.312
  8. 다양한 용매에서 Soxhlet 추출기를 이용한 감귤 껍질에서 d-limonene 추출의 최적조건 연구 vol.53, pp.6, 2012, https://doi.org/10.9713/kcer.2015.53.6.717
  9. Optimization of Hyaluronidase Inhibition Activity from Prunus davidiana (Carriere) Franch Fruit Extract Fermented by its Isolated Bacillus subtilis Strain SPF4211 vol.26, pp.9, 2012, https://doi.org/10.4014/jmb.1605.05038
  10. Enhanced Production of Gamma-Aminobutyric Acid by Optimizing Culture Conditions of Lactobacillus brevis HYE1 Isolated from Kimchi, a Korean Fermented Food vol.27, pp.3, 2017, https://doi.org/10.4014/jmb.1610.10008
  11. Optimal Fermentation Conditions of Hyaluronidase Inhibition Activity on Asparagus cochinchinensis Merrill by Weissella cibaria vol.27, pp.4, 2012, https://doi.org/10.4014/jmb.1611.11051
  12. 반응표면 분석법에 의한 표고균사체발효 적하수오 열수 추출조건의 최적화 vol.16, pp.1, 2012, https://doi.org/10.14480/jm.2018.16.1.22