• Title/Summary/Keyword: Fuel Cell Stack

Search Result 487, Processing Time 0.025 seconds

Experimental Study on the Preferential Oxidation Reactor Performance Using a Water Cooling Heat Removal for Polymer Electrolyte Membrane Fuel Cell (수냉식 방열을 이용한 연료전지용 PROX 반응기의 성능에 관한 실험적 연구)

  • KIM, JINSAN;JO, TAEHYUN;KOO, BONCHAN;LEE, DOHYUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.5
    • /
    • pp.503-509
    • /
    • 2016
  • Fuel cell is a device for producing electricity by using the hydrogen produced by the fuel processor. At this time, CO is also created by the fuel processor. The resulting CO enters the stack where is produce electricity and leads to the adsorption of anode catalyst, finally the CO poisoning occurs. Stack which occurred CO poisoning has a reduction in performance and shelf life are gradually fall because they do not respond to hydrogen. In this paper, experiments that using a PROX reactor to prevent CO poisoning were carried out for removing the CO concentration to less than 10ppm range available in the fuel cell. Furthermore experiments by the PROX reaction was designed and manufactured with a water-cooling heat exchange reactor to maintain a suitable temperature control due to the strong exothermic reaction.

A Study on Electronically Controlled R-134a Heat Pump System for a Fuel Cell Electric Vehicle (FCEV) (연료전지 자동차용 R-134a 전동식 히트펌프 시스템 개발에 관한 연구)

  • Lee, Jun-Kyoung;Lee, Dong-Hyuk;Won, Jong-Phil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.124-132
    • /
    • 2007
  • The main objective of this work is to investigate the characteristics of a heat pump system for fuel cell electric vehicle (FCEV). The present heat pump system adopts an electrically driven compressor running with R134a and uses the heat from the fuel cell stack as the heat source for the exterior heat exchanger. The experimental work has been done with various operating conditions such as different compressor speeds, fuel cell stack coolant temperatures and flow rates. The heating capacity was measured to be from 4 to 10 kW at $-20^{\circ}C$ ambient temperature, and the outlet temperature of interior heat exchanger was up to $70^{\circ}C$. After 30 seconds from start-up, the system reached a steady state and the heating capacity of 6.8 kW was acquired, and after 90 seconds, the air outlet temperature of interior heat exchanger became $35^{\circ}C$.

A Study on Operation Characteristics of Planar-type SOFC System Integrated with Fuel Processor (연료개질기를 연계한 고체 산화물 연료전지 시스템의 운전 특성에 관한 연구)

  • Ji Hyun-Jin;Lim Sung-Kwang;Yoo Yung-Sung;Bae Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.8 s.251
    • /
    • pp.731-740
    • /
    • 2006
  • The solid oxide fuel cell (SOFC) is expected to be a candidate for distributed power sources in the next generation, due to its high efficiency and high-temperature waste heat utilization. In this study, the 5-cell SOFC stack was operated with pure hydrogen or reformed gas at anode side and air at cathode side. When stack was operated with diesel and methane ATR reformer, the influence of the $H_2O/C,\;O_2/C$ and GHSV on performance of stacks have been investigated. The result shows that the cell voltage was decreased with the increase of $H_2O/C$ and $O_2/C$ due to the partial pressure of fuel and water, and cell voltage was more sensitive to $O_2/C$ than $H_2O/C$. Next, the dynamic model of SOFC system included with ATR reformer was established and compared with experimental data. Based on dynamic model, the operation strategy to optimize SOFC-Reformer system was suggested and simulated.

Characteristics of Unit Cell for SOFC (SOFC의 단위전지 특성평가)

  • 김귀열;엄승욱;문성인
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.80-83
    • /
    • 1996
  • Among the fuel cell system, solid oxide fuel eels is constructed of ceramics, so stack construction is simple , power density is very high, and there is no corrosion problems. The purpose of this research is investigate the characteristics of unit cell for SOFC .

  • PDF

Analyzing the Effects of MEA Designs on Cold Start Behaviors of Automotive Polymer Electrolyte Fuel Cell Stacks (자동차용 고분자전해질형연료전지 스택에서의 막-전극접합체 설계인자가 저온시동에 미치는 영향성 연구)

  • Gwak, Geon-Hui;Ko, Jo-Han;Ju, Hyun-Chul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.1
    • /
    • pp.8-18
    • /
    • 2012
  • This paper presents a three-dimensional, transient cold-start polymer electrolyte fuel cell (PEFC) model to numerically evaluate the effects of membrane electrode assembly (MEA) design and cell location in a PEFC stack on PEFC cold start behaviors. The cold-start simulations show that the end cell experiences significant heat loss to the sub-freezing ambient and thus finally cold-start failure due to considerable ice filling in the cathode catalyst layer. On the other hand, the middle cells in the stack successfully start from $-30^{\circ}C$ sub-freezing temperature due to rapid cell temperature rise owing to the efficient use of waste heat generated during the cold-start. In addition, the simulation results clearly indicate that the cathode catalyst layer (CL) composition and thickness have an substantial influence on PEFC cold-start behaviors while membrane thickness has limited effect mainly due to inefficient water absorption and transport capability at subzero temperatures.

A Study on the Estimation of Homogeneous Physical Properties of Molten Carbonate Fuel Cell Stacks (용융탄산염형 연료전지 스택의 균질 물성치 추정에 관한 연구)

  • Lee, Sang-Wook;Suh, Yong-S.
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.2939-2944
    • /
    • 2011
  • The performance and efficiency of a Molten Carbonate Fuel Cell system will improve with the aids of numerical simulations such as finite element analysis. For best simulation results, the virtual model must accurately reflect the actual model including the material properties. It is very difficult, however, to make a detailed numerical model of the stack that consists of hundreds of layers of unit cells composed of various materials like metal, ceramics, polymer, etc. Instead, a practical approach is to find a homogenized material property of the stack as a whole as an approximate replacement. In this paper, the compression ratio of a unit cell is introduced, and a new method is proposed to estimate the homogeneous material properties for both the active and the manifold regions of the stack under the assumption that the compressive deformation occurs only at the separators and matrices in the unit cells. The estimated properties are applied successfully to simulating an actual stack.

Development of a Fuel Cell System Model for a Small Ship (소형 선박용 연료전지 시스템 모델 개발)

  • Bang, Eun-Shin;Kim, Young-Min;Kim, Myoung-Hwan;Park, Sang-Kyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.569-575
    • /
    • 2020
  • In this study, a fuel cell system model for ship power was developed and verified by comparing the experimental results obtained by supplying pure oxygen. To verify the proposed model, the fuel cell output characteristics when oxygen was supplied were compared with those when air was supplied using an air compressor. In addition, the effect of the change in the thermal properties of the fuel cell system on the output of the stack was examined. Within the experimental range of this study, when pure oxygen was supplied as the cathode supply gas, the calculated and experimental voltages and outputs obtained through modeling were almost the same over the entire load range. When air was supplied instead of oxygen for the cathode supply at a constant load of 560 A, each stack voltage was approximately 14 V, the stack output was approximately 8 kW, and the stack efficiency was approximately 3 %. It was confirmed that the overall system efficiency was reduced by approximately 8 %. Among the thermal properties examined in this study, the heat transfer coefficient of the coolant to the stack was found to have the greatest effect on the output of the stack.

Manufacture and Evaluation of Small Size PEMFC Stack Using Carbon Composite Bipolar Plate (탄소복합소재 분리판을 이용한 소형 고분자전해질 연료전지 스택 제작 및 성능분석)

  • Han, C.;Choi, M.;Lee, J.J.;Lee, J.Y.;Kim, I.T.;An, J.C.;Shim, J.;Lee, H.K.
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.81-88
    • /
    • 2010
  • Small size polymer electrolyte membrane fuel cell (PEMFC) stacks were prepared using carbon composite and graphite bipolar plates and their performances were evaluated on reactant gas and operating time. In comparison to single cell and stack, it was identified that home-made bipolar plate was well-designed to maximize stack performance as high as that of single cell. During long-term operation, the performances of stacks using two different kinds of bipolar plates were compared. The decrease of performance in both stacks was accelerated with increasing load current. It was observed from stack test that the stack performance using carbon composite bipolar plate was very similar to that using graphite bipolar plate.

Detailed Design of Power Conversion Device Hardware for Realization of Fuel Cell Power Generation System (연료전지 발전시스템 구현을 위한 전력변환장치 하드웨어 세부설계)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.135-140
    • /
    • 2022
  • In addition to the stack that directly generates electricity by the reaction of hydrogen and oxygen, the fuel cell power generation system has a reformer that generates hydrogen from various fuels such as methanol and natural gas. It also consists of a power converter that converts the DC voltage generated in the stack into a stable AC voltage. The fuel cell output of such a system is direct current, and in order to be used at home, an inverter device that converts it into alternating current through a power converter is required. In addition, a DC-DC step-up converter is used to boost the fuel cell voltage to about 30~70V, which is the inverter operating voltage, to about 380V. The DC-DC step-up converter is a DC voltage variable device that exists between the fuel cell output and the inverter. Accordingly, since a constant output voltage of the converter is generated in response to a change in the output voltage of the fuel cell, the inverter can receive constant power regardless of the voltage change of the fuel cell. Therefore, in this paper, we discuss the detailed hardware design of the full-bridge converter, which is the main power source of the inverter that receives the fuel cell output voltage (30~70V) as an input and is applied to the grid among the members of the fuel cell power generation system.

Effect of Operating Conditions on Cold Startup of PEMFC Stack (운전조건에 따른 PEMFC 스택 냉시동 특성 연구)

  • Ko, Jae-Jun;Lee, Jong-Hyun;Kim, Sae-Hoon;Ahn, Byung-Ki;Lim, Tae-Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.3
    • /
    • pp.224-231
    • /
    • 2009
  • The improvement of cold start capability is one of the most challenging tasks to be solved for commercialization of fuel cell vehicle. In this study, cold start test and ice blocking test(IBT) of fuel cell stack were carried out under various operating conditions. This fuel cell stack can be thawed from -20$^{\circ}$C within 25s and the voltage change was found to be comprised of 4 steps; the first step is the voltage decrease by overpotential, the second step is the voltage increase by the cell temperature increase, the third step is the voltage decrease by ice blocking, and the last step is the voltage increase by thawing. Bootstrap startup was failed after shutdown at temperature under 40$^{\circ}$C because of much condensed water in the fuel cell. Quantitative estimation of cold start capability have been demonstrated by ice blocking test(IBT). In the results, it was found that cold start capability was improved double every 10$^{\circ}$C from 30$^{\circ}$C to 65$^{\circ}$C and enhanced by 30% at the condition of SR 3/4 compared to SR 1.5/2.0 and enhanced by 20% with dry purge condition compared to with RH 50% purge condition.