• 제목/요약/키워드: Fuel Cell Model

검색결과 442건 처리시간 0.033초

연료전지 과도 특성 모델링 기반 FCEV용 배터리 용량 최적 설계 (Optimal Design of Battery of Fuel Cell Electric Vehicle Based on Fuel Cell Dynamic Characteristic Model)

  • 고정민;김종수;이영국;이병국
    • 전기학회논문지
    • /
    • 제58권9호
    • /
    • pp.1714-1719
    • /
    • 2009
  • In this paper, methodology of battery optimal designing is proposed. Fuel cell model including dynamic characteristic is developed and load model is produced by considering driving schedule. Using these models, required energy of load and supplying energy from fuel cell are analyzed by comparing simulation results. Also parameter of fuel cell model is changed variously and battery capacity is calculated in each cases. And methode of battery optimal designing is presented by regarding dynamic characteristic of fuel cell.

Advanced Interchangeable Dynamic Simulation Model for the Optimal Design of a Fuel Cell Power Conditioning System

  • Kim, Jong-Soo;Choe, Gyu-Yeong;Lee, Byoung-Kuk;Shim, Jae-Sun
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권4호
    • /
    • pp.561-570
    • /
    • 2010
  • This paper presents an advanced dynamic simulation model of a proton exchange membrane fuel cell for the optimal design of a fuel cell power conditioning system (FC-PCS). For the development of fuel cell models, the dynamic characteristics of the fuel cell are considered, including its static characteristics. Then, software fuel cell simulation is realized using Matlab-Simulink. Specifically, the design consideration of PCS (i.e., power semiconductor switch, capacitor, and inductor) is discussed by comparatively analyzing the developed simulator and ideal DC source. In addition, a cosimulation between the fuel cell model and PCS realized using the PSIM software is performed with the help of the SimCoupler module. Detailed analysis and informative simulation results are provided for the optimal design of fuel cell PCS.

PEM 연료전지 자동차의 급기 시스템의 모델링 및 분석 (Modeling and Analysis of the Air Supply System for Vehicular PEM Fuel Cell)

  • 장현탁;강이석
    • 한국수소및신에너지학회논문집
    • /
    • 제14권3호
    • /
    • pp.236-246
    • /
    • 2003
  • This paper focuses on developing a model of a PEM fuel cell stack and to integrate it with realistic model of the air supply system for fuel cell vehicle application. The fuel cell system model is realistically and accurately simulated air supply operation and its effect on the system power and efficiency using simulation tool Matlab/Simulink. The Peak performance found at a pressure ratio of 3, and it give a 15mV increase per cell. The limit imposed is a minimum SR(Stoichiometric Ratio) of 2 at low fuel cell load and 2.5 at high fuel cell load.

Consideration of reversed Boudouard reaction in solid oxide direct carbon fuel cell (SO-DCFC)

  • Vahc, Zuh Youn;Yi, Sung Chul
    • Journal of Ceramic Processing Research
    • /
    • 제19권6호
    • /
    • pp.514-518
    • /
    • 2018
  • The direct carbon fuel cell (DCFC) has attracted researcher's attention recently, due to its high conversion efficiency and its abundant fuel, carbon. A DCFC mathematical model has developed in two-dimensional, lab-scale, and considers Boudouard reaction and carbon monoxide (CO) oxidation. The model simulates the CO production by Boudouard reaction and additional electron production by CO oxidation. The Boudouard equilibrium strongly depends on operating temperature and affects the amount of produced CO and consequentially affects the overall fuel cell performance. Two different operating temperatures (973 K, 1023 K) has been calculated to discover the CO production by Boudouard reaction and overall fuel cell performance. Moreover, anode thickness of the cell has been considered to find out the influence of the Boudouard reaction zone in fuel cell performance. It was found that in high temperature operating DCFC modeling, the Boudouard reaction cannot be neglected and has a vital role in the overall fuel cell performance.

연료전지 트럭의 운전 부하 패턴에 따른 고분자 연료전지 스택의 동특성 시뮬레이션 (Dynamic Simulation of Proton Exchange Membrane Fuel Cell Stack under Various Operating Pattern of Fuel Cell Powered Heavy Duty Truck)

  • 손나민;무자히드 나심;김의연;이영덕
    • 한국수소및신에너지학회논문집
    • /
    • 제35권2호
    • /
    • pp.121-128
    • /
    • 2024
  • In this study, a dynamic simulation model of a heavy-duty truck, equipped with a fuel cell power-train, has been developed and the dynamic behavior of the fuel cell stack has bee investigated using. Output change simulations were performed according to several drive cycle load change of a fuel cell truck. Mathworks' Simulink and Simscape program were used to develop the model. The model is comprised of fuel cell power train, power converter system and truck vehicle part. The vehicle runs at targeted speed of the truck, which is set as the load of the system. The dynamic behavior of the fuel cell stack according to the weight difference were analyzed, and based on this, the dynamic characteristics of the fuel cell output power and battery state with simple load was analyzed.

대면적 셀 고분자 막전해질 연료전지의 열관리를 위한 2 차원 수치 해석 모델 (Two Dimensional Numerical Model for Thermal Management of Proton Exchange Membrane Fuel Cell with Large Active Area)

  • 유상석;이영덕;안국영
    • 대한기계학회논문집B
    • /
    • 제32권5호
    • /
    • pp.359-366
    • /
    • 2008
  • A two-dimensional thermal model of proton exchange membrane fuel cell with large active area is developed to investigate the performance of fuel cell with large active area over various thermal management conditions. The core sub-models of the two-dimensional thermal model are one-dimensional agglomerate structure electrochemical reaction model, one-dimensional water transport model, and a two-dimensional heat transfer model. Prior to carrying out the simulation, this study is contributed to set up the operating temperature of the fuel cell with large active area which is a maximum temperature inside the fuel cell considering durability of membrane electrolyte. The simulation results show that the operating temperature of the fuel cell and temperature distribution inside the fuel cell can affect significantly the total net power at extreme conditions. Results also show that the parasitic losses of balance of plant component should be precisely controlled to produce the maximum system power with minimum parasitic loss of thermal management system.

가정용 고분자 연료전지의 중합체에 대한 특성해석 (The characteristic analysis for polymer of household macromolecule fuel cell)

  • 조영래;김남화;한경희;윤신용;백수현;김일남
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1722-1724
    • /
    • 2005
  • The focus of this paper is to develop a mathematical model for investigating the dynamic performance of a polymer electrolyte membrane fuel cell. The model in this work is based on physical laws having clear significance in replicating the fuel cell system and can easily be used to set up different operational strategies. Simulation results display the transient behavior of the voltage within each single cell, and also within a number of such single cells combined into a fuel cell stack system. A linear as well as a nonlinear analysis of the polymer electrolyte membrane fuel cell system(PEMFC) has been discussed in order to present a complete and comprehensive view of this kind of modeling. Also, a comparison of the two kinds of analysis has been performed. Finally, the various characteristics of the fuel cell system are plotted in order to help us understand its dynamic behavior. Results indicate that there is a considerable amount of error in the modeling process if we use a linear model of the fuel cell. Thus, the nonlinearities present in the fuel cell system should be taken into account in order to obtain a better understanding of the dynamic behavior of the fuel cell system.

  • PDF

Dynamic Model of PEM Fuel Cell Using Real-time Simulation Techniques

  • Jung, Jee-Hoon;Ahmed, Shehab
    • Journal of Power Electronics
    • /
    • 제10권6호
    • /
    • pp.739-748
    • /
    • 2010
  • The increased integration of fuel cells with power electronics, critical loads, and control systems has prompted recent interest in accurate electrical terminal models of the polymer electrolyte membrane (PEM) fuel cell. Advancement in computing technologies, particularly parallel computation techniques and various real-time simulation tools have allowed the prototyping of novel apparatus to be investigated in a virtual system under a wide range of realistic conditions repeatedly, safely, and economically. This paper builds upon both advancements and provides a means of optimized model construction boosting computation speeds for a fuel cell model on a real-time simulator which can be used in a power hardware-in-the-loop (PHIL) application. Significant improvement in computation time has been achieved. The effectiveness of the proposed model developed on Opal RT's RT-Lab Matlab/Simulink based real-time engineering simulator is verified using experimental results from a Ballard Nexa fuel cell system.

가스 확산층(GDL)내부의 물이 연료전지 성능에 미치는 영향 (The Effect of Liquid Water in Fuel Cell Cathode Gas Diffusion Layer on Fuel Cell Performance)

  • 박상균
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권4호
    • /
    • pp.374-380
    • /
    • 2015
  • 본 연구에서는 연료전지 캐소드 가스 확산층에서의 물의 영향이 연료전지 성능에 미치는 영향을 검토하기 위하여 연료전지 스택의 부하 변동에 따른 가스 확산층에서의 2상 현상의 구현이 가능한 동적 모델을 개발하였다. 개발된 모델에 대하여 2상의 영향에 의한 연료전지 부하변동에 따른 연료전지 스택 성능, 가스 확산층 내부에서의 물 증기와 산소의 농도분포, 가스 확산층의 두께 및 다공성이 연료전지 스택 전압에 미치는 영향에 대하여 검토하였다. 그 결과 본 연구의 범위 내에서 연료전지 스택 전압은 부하에 관계없이 2상 모델이 1상 모델보다 낮아짐을 알 수 있다. 촉매층 부근 가스 확산층에서의 산소 농도는 가장 낮고 물 증기의 농도는 가장 높음을 알 수 있었다. 또한, GDL의 두께가 두꺼울수록 GDL의 다공성이 작을수록 연료전지 스택 전압이 낮아짐을 알 수 있었다.

연료전지 전원 시스템의 설계 및 분석을 위한 PEMFC의 회로 모델 (A Circuit Model of PEMFC for Design and Analyze Fuel Cell Power System)

  • 이수호;이현우;권순걸
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2006년도 전력전자학술대회 논문집
    • /
    • pp.197-199
    • /
    • 2006
  • The Proton Exchange Membrane Fuel Cells (PEMFCs) are being used in a variety of applications including portable power generation, transportation and back-up power systems. In this paper presents a novel circuit model for a PEMFC that can be used to design and analyze fuel-cell power system. The Pspice-based model uses BJTs, L and C elements available in the Pspice library with some modification. The model includes the phenomena like activation polarization, ohmic polarization and mass transport effect present in a PEM fuel cell. Simulated characteristics of the fuel cell were compared with the experimental results obtained on a commercial fuel cell.

  • PDF