• Title/Summary/Keyword: Fuel Bias

Search Result 22, Processing Time 0.02 seconds

A Determination of Bias between Calculational Methods for the Criticality Safety Analysis of Spent Fuel Storage Pool with Burnup Credit (연소를 고려한 사용후핵연료저장조 핵임계 안전성분석에서 계산체제간의 편차결정)

  • Byung Jin Jun;Chang-Kun Lee;Hee-Chun No
    • Nuclear Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.17-26
    • /
    • 1986
  • A test is made for a method to determine reliable bias in the criticality safety analysis of spent fuel storage pool with turnup credit between the reference and rack criticality calculation methods. The spent fuel pool of Kori Unit 1 is conceptually redesigned to the most compact rack with turnup credit, and its multiplication factors are calculated depending on fuel enrichment and burnup, by the Monte Carlo code KENO-IV as a reference and by a two-dimensional collision probability code FATAC as a practical method. Then, the computed values with the help of the above two computer codes are compared to evaluate the bias and its trend in terms of multiplication factor on fuel enrichment and turnup. The result indicates that the bias can be determined with reliability basis but without any disadvantage in criticality safety margin compared with the conventional method.

  • PDF

Hydrogen Transport through Palladium Foil Placed in Nafion Electrolyte of H2/O2 Fuel Cellsorption

  • Song, Seong-Min;Koo, Il-Gyo;Lee, Woong-Moo
    • Journal of Hydrogen and New Energy
    • /
    • v.12 no.4
    • /
    • pp.257-265
    • /
    • 2001
  • Placing a hydrogen conducting, methanol impermeable metallic barrier like palladium (Pd) is a well-known method for preventing methanol crossover through solid polymer electrolyte for direct methanol fuel cells (DMFC). Applying a bias potential between the anode and the barrier can further develop this concept so that the hydrogen transfer rate is enhanced. Since hydrogen diffuses in Pd as atomic form while it moves through nafion electrolyte as ion, it has to be reduced or oxidized whenever it passes the interface formed by Pd and the electrolyte. We performed experiments to measure the hydrogen transport through the Pd membrane placed in Nafion electrolyte of hydrogen/oxygen fuel cell (PEMFC). Applying a bias potential between the hydrogen electrode of the cell and the Pd membrane facilitated the hydrogen passage through the Pd membrane. The results show that the cell current measured with the Pd membrane placed reached almost 40 % the value measured with the cell without Pd membrane. It was found that the current flown through the bias path is only a few percent of the cell current.

  • PDF

Optimal Selection of Fuel Bias and Propellant Residual Analysis of a Liquid Rocket (액체 추진 로켓의 최적 연료 바이어스 산정 및 추진제 잔류량 분석)

  • Song, Eun-Jung;Cho, Sangbum;Roh, Woong-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.1
    • /
    • pp.88-95
    • /
    • 2015
  • This paper considers the effects of propellant mixture ratio and loading errors on the performance of a liquid rocket. Propellant residuals generated by error sources are analyzed for a launch vehicle model whose first stage consists of a cluster rocket of four 75-tonf class engines using a statistical Monte-Carlo approach and then the optimal fuel biases minimizing residuals are computed. The results are validated through comparison with analytic method using approximate formula, which have been applied for other space launch vehicles.

Homogenized cross-section generation for pebble-bed type high-temperature gas-cooled reactor using NECP-MCX

  • Shuai Qin;Yunzhao Li;Qingming He;Liangzhi Cao;Yongping Wang;Yuxuan Wu;Hongchun Wu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3450-3463
    • /
    • 2023
  • In the two-step analysis of Pebble-Bed type High-Temperature Gas-Cooled Reactor (PB-HTGR), the lattice physics calculation for the generation of homogenized cross-sections is based on the fuel pebble. However, the randomly-dispersed fuel particles in the fuel pebble introduce double heterogeneity and randomness. Compared to the deterministic method, the Monte Carlo method which is flexible in geometry modeling provides a high-fidelity treatment. Therefore, the Monte Carlo code NECP-MCX is extended in this study to perform the lattice physics calculation of the PB-HTGR. Firstly, the capability for the simulation of randomly-dispersed media, using the explicit modeling approach, is developed in NECP-MCX. Secondly, the capability for the generation of the homogenized cross-section is also developed in NECP-MCX. Finally, simplified PB-HTGR problems are calculated by a two-step neutronics analysis tool based on Monte Carlo homogenization. For the pebble beds mixed by fuel pebble and graphite pebble, the bias is less than 100 pcm when compared to the high-fidelity model, and the bias is increased to 269 pcm for pebble bed mixed by depleted fuel pebble. Numerical results show that the Monte Carlo lattice physics calculation for the two-step analysis of PB-HTGR is feasible.

Improvement of Sensing Performance on Nasicon Amperometric NO2 Sensors (나시콘 전류검출형 NO2 센서의 성능개선)

  • Kim, Gwi-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.912-917
    • /
    • 2007
  • Many electrochemical power devices such as solid state batteries and solid oxide fuel cell have been studied and developed for solving energy and environmental problems. An amperometric gas sensor usually generates sensing signal of electric current along the proportion of the concentration of target gas under the condition of limiting current. For narrow variations of gas concentration, the amperometric gas sensor can show higher precision than a potentiometric gas sensor does. In additional, cross sensitivities to interfering gases can possibly be mitigated by choosing applied voltage and electrode materials properly. In order to improve the sensitivity to $NO_2$, the device was attached with Au reference electrode to form the amperometric gas sensor device with three electrodes. With the fixed bias voltage being applied between the sensing and counter electrodes, the current between the sensing and reference electrodes was measured as a sensing signal. The response to $NO_2$ gas was obviously enhanced and suppressed with a positive bias, respectively, while the reverse current occurred with a negative bias. The way to enhance the sensitivity of $NO_2$ gas sensor was thus realized. It was shown that the response to $NO_2$ gas could be enhanced sensitivity by changing the bias voltage.

Sensitivity studies in spent fuel pool criticality safety analysis for APR-1400 nuclear power plants

  • Al Awad, Abdulrahman S.;Habashy, Abdalla;Metwally, Walid A.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.709-716
    • /
    • 2018
  • A criticality safety analysis was performed for the APR-1400 spent fuel pool region-II to ensure the safe storage of spent fuel, with credit taken for depletion and in-rack neutron absorbers (Metamic panels). PLUS7 fuel assembly was modeled using TRITON-NEWT of SCALE-6.1. The burnup-dependent cross-section library was generated under limiting core-operating conditions with 5%-w U-235 initial enrichment. MCNP5 was used to evaluate the neutron multiplication factor in an infinite array of rack cells with the axially nonuniformly burnt PLUS7 assemblies under normal, abnormal, and accident conditions; including all biases and uncertainties. The main purpose of this study is to investigate reactivity variations due to the critical depletion and reactor operation parameters. The approach, assumptions, and modeling methods were verified by analyzing the contents of the most important fissile and the associated reactivity effects. The Nuclear Regulatory Commission (NRC) guidance on k-eff being less than 1.0 for spent fuel pools filled with unborated water was the main criterion used in this study. It was found that assemblies with 49.0 GWd/MTU and 5.0 w/o U-235 initial enrichment loaded in Region-II satisfy this criterion. Moreover, it was found that the end effect resulted in a positive bias, thus ensuring its consideration.

On using computational versus data-driven methods for uncertainty propagation of isotopic uncertainties

  • Radaideh, Majdi I.;Price, Dean;Kozlowski, Tomasz
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1148-1155
    • /
    • 2020
  • This work presents two different methods for quantifying and propagating the uncertainty associated with fuel composition at end of life for cask criticality calculations. The first approach, the computational approach uses parametric uncertainty including those associated with nuclear data, fuel geometry, material composition, and plant operation to perform forward depletion on Monte-Carlo sampled inputs. These uncertainties are based on experimental and prior experience in criticality safety. The second approach, the data-driven approach relies on using radiochemcial assay data to derive code bias information. The code bias data is used to perturb the isotopic inventory in the data-driven approach. For both approaches, the uncertainty in keff for the cask is propagated by performing forward criticality calculations on sampled inputs using the distributions obtained from each approach. It is found that the data driven approach yielded a higher uncertainty than the computational approach by about 500 pcm. An exploration is also done to see if considering correlation between isotopes at end of life affects keff uncertainty, and the results demonstrate an effect of about 100 pcm.

Practical resolution of angle dependency of multigroup resonance cross sections using parametrized spectral superhomogenization factors

  • Park, Hansol;Joo, Han Gyu
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1287-1300
    • /
    • 2017
  • Based on the observation that ignoring the angle dependency of multigroup resonance cross sections within a fuel pellet would result in nontrivial underestimation of the spatial self-shielding of flux, a parametrized spectral superhomogenization (SPH) factor library (PSSL) method is developed as a practical means of resolving the problem. Region-wise spectral SPH factors are calculated by the normal and transport corrected SPH iterations after ultrafine group slowing down calculations over various light water reactor pin-cell configurations. The parametrization is done with fuel temperature, U-238 number density, fuel radius, moderator source represented by ${\Sigma}_{mod}V_{mod}$, and the number density ratio of resonance nuclides to that of U-238 in a form of resonance interference correction factors. The parametrization is successful in that the root mean square errors of the interpolated SPH factors over the fuel regions of various pin-cells are within 0.1%. The improvement in reactivity error of the PSSL method is shown to be superior to that by the original SPH method in that the reactivity bias of -200 pcm to -300 pcm vanishes almost completely. It is demonstrated that the environment effect takes only about 4% in the reactivity improvement so that the pin-cell based PSSL method is effective in the assembly problems.

Effects of Liquid Fuel on Spacecraft's Moment of Inertia and Motion during Reorientation (방향전환 기동 시 액체연료가 위성체의 관성모멘트 및 자세운동에 미치는 영향 분석)

  • Kang, Ja-Young;Lee, Sang-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • In this paper, reorientation based on angular momentum exchange is applied for a bias momentum stabilized satellite, which is equipped with a spherical fuel tank, and the effect of liquid slosh on the attitude properties such as inertia tensor and angular rate is investigated. In order to represent the slosh motion of liquid an equivalent mechanical model is adopted and full nonlinear equations of motion for three-body system are derived. Computer simulations are performed for several cases, which use the viscosity of liquid and the center location of the tank as input parameters, mainly in order to observe how the viscosity of liquid and the center location of the tank influence the spacecraft’s attitude. The investigation includes observing time-variations of the inertia tensor, especially presence of components of product of inertia during the maneuver.

  • PDF

The implementation of control system for enhancing the reliability of the cooling system of pool storage (저장조냉각계통의 신뢰성향상을 위한 제어시스템 구현)

  • 이철용;변기호;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.367-371
    • /
    • 1990
  • In this paper, a real-time fault tolerant control system has been designed for the cooling system of the spent fuel pool storage. The fault tolerant control system consists of the fault detection part, the redundant actuator part(main and backup pumps) and the controller implemented on programmable. logic controller. This paper considers only the actuator fault whose detection is accomplished using Friedland's separated bias estimation method. This paper also shows the real-time experimental results from which it can be concluded that the designed fault tolerant control system exhibits satisfactory performance.

  • PDF