• Title/Summary/Keyword: Fucosidase

Search Result 23, Processing Time 0.021 seconds

A comparison of the hydrolase activities of excretory-secretory products and somatic extracts from fish parasitic nematodes, Anisakis simplex sensu stricto and Anisakis pegreffii larvae (어류 기생성 선충 Anisakis simplex sensu stricto와 Anisakis pegreffii 유충의 excretory-secretory products 및 somatic extracts의 가수분해효소 활성 비교)

  • Jeon, Chan-Hyeok;Wi, Seong;Kim, Jeong-Ho
    • Journal of fish pathology
    • /
    • v.27 no.1
    • /
    • pp.25-33
    • /
    • 2014
  • Hydrolase activities of excretory-secretory products (ESP) and somatic extracts (SE) from Anisakis simplex sensu stricto (s.s.) and Anisakis pegreffii larvae were investigated by using API ZYM kit. In esterase group, acid phosphatase showed high activity from both of A. simplex (s.s.) and A. pegreffii. Esterase (C4) showed activity only from SE and A. simplex (s.s.) showed higher activity than A. pegreffii. Alkaline phosphatase, acid phosphatase and naphthol-AS-BI-phosphohydrolase showed higher activity in 3rd stage larvae than in 4th stage larvae of both species. In aminopeptidase group, only leucine arylamidase showed remarkable activity in SE of both anisakid species, and A. simplex (s.s.) SE showed higher activity than A. pegreffii SE. In glycosidase group, N-acetyl-${\beta}$-glucosaminidase, ${\alpha}$-mannosidase, ${\alpha}$-fucosidase showed higher activity in A. simplex (s.s.) than A. pegreffii, and 4th larvae showed higher activity than 3rd larvae. These differences in hydrolase activity of anisakid nematodes larvae are thought to be due to different metabolism such as growth, moulting, digestion and feeding.

Changes of Glycosidase Activity of Frozen-Thawed Spermatozoa in Human

  • Lee, Chae-Sik;Lee, Sang-Chan;Lee, Ji-Eun;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • v.35 no.2
    • /
    • pp.185-190
    • /
    • 2011
  • To evaluate the effect of spermatozoa culture on glycosidase activity of frozen-thawed spermatozoa in human, the spermatozoa were treated experimentally and assayed for activities of ${\alpha}$-L-fucosidase, ${\alpha}$-D-mannosidase, ${\beta}$-D-galactosidase and N-acetyl-${\beta}$-D-glucosaminidase (${\beta}$-GlcNAc'ase). The ${\beta}$-GlcNAc'ase activity was at least two-folds higher than other glycosidases regardless of spermatozoa incubation (p<0.05). The spermatozoa motility was decreased with incubation periods, but no effects by different glycosidases on the changes of spermatozoa motility during the various periods of incubation. In all glycosidases, the spermatozoa-zona binding rates in spermatozoa without incubation were higher than in spermatozoa incubated for 2 h (p<0.05). ${\beta}$-GlcNAc'ase is present mainly in the plasma membrane of spermatozoa frozen-thawed in human. It was also shown that the glycosidase activity was increased in all glycosidases in spite of lower sperm-zona binding by spermatozoa incubation.

Isolation and Characterization of Marine Bacterial Strain Degrading Fucoidan from Korean Undaria pinnatifida Sporophylls

  • Kim, Woo-Jung;Kim, Sung-Min;Lee, Yoon-Hee;Kim, Hyun-Guell;Kim, Hyung-Kwon;Moon, Seong-Hoon;Suh, Hyun-Hyo;Jang, Ki-Hyo;Park, Yong-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.616-623
    • /
    • 2008
  • In spite of an increasing interest in fucoidans as biologically active compounds, no convenient commercial sources with fucoidanase activity are yet available. A marine bacterial strain that showed confluent growth on a minimal medium containing fucoidan, prepared from Korean Undaria pinnatifida sporophylls, as the sole carbon source was isolated and identified based on a 16S rDNA sequence analysis as a strain of Sphingomonas paucimobilis, and named Sphingomonas paucimobilis PF-1. The strain depolymerized fucoidan into more than 7 distinct low-molecular-mass fucose-containing oligosaccharides, ranging from 305 to 3,749 Da. The enzyme activity was shown to be associated with the whole cell, suggesting the possibility of a surface display of the enzyme. However, a whole-cell enzyme preparation neither released the monomer L-fucose from the fucoidan nor hydrolyzed the chromogenic substrate p-nitrophenyl-${\alpha}$-L-fucoside, indicating that the enzyme may be an endo-acting fucoidanase rather than an ${\alpha}$-L-fucosidase. Therefore, this would appear to be the first report on fucoidanolytic activity by a Sphingomonas species and also the first report on the enzymatic degradation of the Korean Undaria pinnatifida sporophyll fucoidan. Moreover, this enzyme activity may be very useful for structural analyses of fucose-containing polysaccharides and the production of bioactive fucooligosaccharides.

돼지 동결정액의 배양에 따른 체외수정능력과 Glycosidase Activity의 변화

  • 황인선;정희태;양부근;김정익;박춘근
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.25-25
    • /
    • 2003
  • 본 연구는 돼지 동결-융해 정자의 배양에 의한 체외수정능력과 glycosidase activity의 관계를 검토하였으며, 또한 돼지난자의 투명대내에서 발견된 당잔기에 대한 정자의 glycosidase 특이성을 확인하기 위하여 $\alpha$-L-fucosidase, $\alpha$-D-mannosidase, $\beta$-D-galactosidase 및 N-acetyl-$\beta$-D-glucosaminidase ($\beta$-GlcNAc'ase)의 activity를 분석하였다. 그 결과 glycosidase activity는 동결정자의 융해 후 배양하지 않았을 때보다 2시간 배양했을 때 더 높게 나타났다. $\beta$-GlcNAc'ase의 activity는 정자 배양 유무에 관계없이 다른 glycosidase 처리시보다 최소한 2배 이상 높게 나타났다. 또한 첨체반응이 유기된 정자의 비율은 glycosidase ($\alpha$-D-mannosidase; P<0.05)에 의해 영향을 받았으며 정자를 배양하지 않은 경우보다는 배양된 정자에서 높게 나타났다. 그러나 배양시간에 따른 정자의 생존성에 대해 glycosidase의 종류에 따른 유의차는 인정되지 않았다. 한편 투명대내 정자의 접착과 침입에 대한 또 다른 실험에서, 서로 다른 glycosidase가 첨가된 배양액내에서 수정된 정자가 배양시간이 길어짐에 따라 정자의 침입율은 낮아졌다($\beta$-GlcNAc'ase; P<0.05). 투명대내의 정자접착 정도는 glycosidase의 첨가시에 무첨가시보다 접착정도가 더 높았으며, 가장 높은 접착율은 $\beta$-GlcNAc'ase첨가시 나타났다. 또한 모든 glycosidase 처리시 2시간 배양한 정자보다는 배양하지 않은 정자에서 투명대에 대한 접착정도가 높게 나타났으며, $\alpha$-D-mannosidase의 처리시 유의적인 차이를 보였다(P<0.05). 본 연구의 결과, $\beta$-GlcNAc'ase가 주로 돼지정자의 원형질막내에 존재하는 것으로 추측되며, 배양된 정자에 의한 투명대 접착정도와 침입율이 낮았음에도 불구하고 glycosidase activity가 증가하는 것으로 나타났다

  • PDF

Purification and Characterization of a Thermostable ${\beta}-Glycosidase$ from Thermus caldophilus GK24

  • Yoo, Jin-Sang;Han, Ki-Woong;Kim, Hyun-Kyu;Kim, Min-Hong;Kwon, Suk-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.5
    • /
    • pp.638-642
    • /
    • 2000
  • A ${\beta}-glycosidase$ enzyme with $\beta$-D-fucosidase, ${\beta}-D-galactosidase$, and $\beta$-D-glucosidase activities has been purified from Thermus caldophilus GK24. The enzyme was monomeric with a molecular mass of 49 kDa, as evidenced by SDS-PAGE. The $K_m$ values for p-nitrophenyl ${\beta}-D-fucopyranoside$ (p-NPFuc), p-nitrophenyl ${\beta}-D-galactopyranoside$ (p-NPGal), and p-nitrophenyl ${\beta}-D-glucopyranoside$ (p-NPGlu) were 0.23 mM, 6.25 mM, and 0.28 mM, respectively. The enzyme showed optimal pH ranging between 5.5-6.5 and maximum temperature in the range of $85-90^{\circ}C$ for all the above mentioned activities. The half-life of the enzyme in sodium phosphate buffer (pH 6.0) at $80^{\circ}C$ was approximately 7 h. The p-NPGal hydrolyzing activity of Tca ${\beta}-glycosidase$ was strongly activated by L-histidine, while the p-NPFuc and p-NPGlu hydrolyzing activities of Tca ${\beta}-glycosidase$ were not affected at all by the amino acid. These results suggest differences in the conformation or in the reactive residues at the active site of Tca ${\beta}-glycosidase$.

  • PDF

Genome Information of Maribacter dokdonensis DSW-8 and Comparative Analysis with Other Maribacter Genomes

  • Kwak, Min-Jung;Lee, Jidam;Kwon, Soon-Kyeong;Kim, Jihyun F.
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.591-597
    • /
    • 2017
  • Maribacter dokdonensis DSW-8 was isolated from the seawater off Dokdo in Korea. To investigate the genomic features of this marine bacterium, we sequenced its genome and analyzed the genomic features. After de novo assembly and gene prediction, 16 contigs totaling 4,434,543 bp (35.95% G+C content) in size were generated and 3,835 protein-coding sequences, 36 transfer RNAs, and 6 ribosomal RNAs were detected. In the genome of DSW-8, genes encoding the proteins associated with gliding motility, molybdenum cofactor biosynthesis, and utilization of several kinds of carbohydrates were identified. To analyze the genomic relationships among Maribacter species, we compared publically available Maribacter genomes, including that of M. dokdonensis DSW-8. A phylogenomic tree based on 1,772 genes conserved among the eight Maribacter strains showed that Maribacter speices isolated from seawater are distinguishable from species originating from algal blooms. Comparison of the gene contents using COG and subsystem databases demonstrated that the relative abundance of genes involved in carbohydrate metabolism are higher in seawater-originating strains than those of algal blooms. These results indicate that the genomic information of Maribacter species reflects the characteristics of their habitats and provides useful information for carbon utilization of marine flavobacteria.

Characterization of Two Algal Lytic Bacteria Associated with Management of the Cyanobacterium Anabaena flos-aquae

  • Kim, Jeong-Dong;Lee, Choul-Gyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.382-390
    • /
    • 2006
  • Various microorganisms were isolated from the surface waters and sediments of eutrophic lakes and reservoirs in Korea to enable an investigation of bacteria having algal lytic activities against Anabaena flos-aquae when water blooming occurs and to study enzyme profiles of algal lytic bacteria. Two bacterial strains, AFK-07 and AFK-13, were cultured, characterized and identified as Acinetobacter johnsonii and Sinorhizobium sp., respectively. The A. johnsonii AFK-07 exhibited a high level of degradatory activities against A. flos-aquae, and produced alginase, caseinase, lipase, fucodian hydrolase, and laminarinase. Moreover, many kinds of glycosidase, such as ${\beta}-galactosidase,\;{\beta}-glucosidase,\;{\beta}-glucosaminidase,\;and\; {\beta}-xylosidase$, which hydrolyzed ${\beta}-O-glycosidic$ bonds, were found in cell-free extracts of A. johnsonii AFK-07. Other glycosidases such as ${\alpha}-galactosidase,\;{\alpha}-N-Ac-galactosidase,\;{\alpha}-mannosidase,\; and\;{\alpha}-L-fucosidase$, which cleave ${\alpha}-O-glycosidic$ bonds, were not identified in AFK-07. In the Sinorhizobium sp. AFK-13, the enzymes alginase, amylase, proteinase (caseinase and gelatinase), carboxymethyl-cellulase (CMCase), laminarinase, and lipase were notable. No glycosidase was produced in the AFK-13 strain. Therefore, the enzyme system of A. johnsonii AFK-07 had a more complex mechanism in place to degrade the cyanobacteria cell walls than did the enzyme system of Sinorhizobium sp. AFK-13. The polysaccharides or the peptidoglycans of A. flos-aquae may be hydrolyzed and metabolized to a range of easily utilized monosaccharides or other low molecular weight organic substances by strain AFK-07 of. A. johnsonii, while the products of polysaccharide degradation or peptidoglycans were more likely to be utilized by Sinorhizobium sp. AFK-13. These bacterial interactions may offer an alternative effective approach to controlling the water choking effects of summer blooms affecting our lakes and reservoirs.

Distribution and Activities of Hydrolytic Enzymes in the Rumen Compartments of Hereford Bulls Fed Alfalfa Based Diet

  • Lee, S.S.;Kim, C.-H.;Ha, J.K.;Moon, Y.H.;Choi, N.J.;Cheng, K.-J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.12
    • /
    • pp.1725-1731
    • /
    • 2002
  • The distribution and activities of hydrolytic enzymes (cellulolyti, hemicellulolytic,pectinolytic and others) in the rumen compartments of Hereford bulls fed 100% alfalfa hay based diets were evaluated. The alfalfa proportion in the diet was gradually increased for two weeks. Whole rumen contents were processed into four fractions: Rumen contents including both the liquid and solid fractions were homogenized and centrifuged, and the supernatant was assayed for enzymes located in whole rumen contents (WRE); rumen contents were centrifuged and the supernatant was assayed for enzymes located in rumen fluids (RFE); feed particles in rumen contents were separated manually, washed with buffer, resuspended in an equal volume of buffer, homogenized and centrifuged and supernatant was assayed for enzymes associated with feed particles (FAE); and rumen microbial cell fraction was separated by centrifugation, suspended in an equal volume of buffer, sonicated and centrifuged, and the supernatant was assayed for enzymes bound with microbial cells (CBE). It was found that polysaccharide-degrading proteins such as $\beta$-1,4-D-endoglucanase, $\beta$-1,4-D-exoglucanase, xylanase and pectinase enzymes were located mainly with the cell bound (CBE) fraction. However, $\beta$-D-glucosidase, $\beta$-D-fucosidase, acetylesterase, and $\alpha$-L-arabinofuranosidase were located in the rumen fluids (RFE) fraction. Protease activity distributions were 37.7, 22.1 and 40.2%, and amylase activity distributions were 51.6, 18.2 and 30.2% for the RFE, FAE and CBE fractions, respectively. These results indicated that protease is located mainly in rumen fluid and with microbial cells, whereas amylase was located mainly in the rumen fluid.

The Rumen Ecosystem : As a Fountain Source of Nobel Enzymes - Review -

  • Lee, S.S.;Shin, K.J.;Kim, W.Y.;Ha, J.K.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.6
    • /
    • pp.988-1001
    • /
    • 1999
  • The rumen ecosystem is increasingly being recognized as a promising source of superior polysaccharide-degrading enzymes. They contain a wide array of novel enzymes at the levels of specific activities of 1,184, 1,069, 119, 390, 327 and $946{\mu}mol$ Reducing sugar release/min/mg protein for endoglucanase, xylanase, polygalactouronase, amylase, glucanase and arabinase, respectively. These enzymes are mainly located in the surface of rumen microbes. However, glycoside-degrading enzymes (e.g. glucosidase, fucosidase, xylosidase and arabinofuranosidase, etc.) are mainly located in the rumen fluid, when detected enzyme activities according to the ruminal compartments (e.g. enzymes in whole rumen contents, feed-associated enzymes, microbial cell-associated enzymes, and enzymes in the rumen fluid). Ruminal fungi are the primary contributors to high production of novel enzymes; the bacteria and protozoa also have important functions, but less central roles. The enzyme activities of bacteria, protozoa and fungi were detected 32.26, 19.21 and 47.60 mol glucose release/min/mL mediem for cellulose; 42.56, 14.96 and 64.93 mmol xylose release/min/mL medium after 48h incubation, respectively. The polysachharide-degrading enzyme activity of ruminal anaerobic fungi (e.g. Neocallimastix patriciarum and Piromyces communis, etc.) was much higher approximately 3~6 times than that of aerobic fungi (e.g. Tricoderma reesei, T. viridae and Aspergillus oryzae, etc.) used widely in industrial process. Therefore, the rumen ecosystem could be a growing source of novel enzymes having a tremendous potential for industrial applications.

Metagenomic Insight into Lignocellulose Degradation of the Thermophilic Microbial Consortium TMC7

  • Wang, Yi;Wang, Chen;Chen, Yonglun;Chen, Beibei;Guo, Peng;Cui, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1123-1133
    • /
    • 2021
  • Biodegradation is the key process involved in natural lignocellulose biotransformation and utilization. Microbial consortia represent promising candidates for applications in lignocellulose conversion strategies for biofuel production; however, cooperation among the enzymes and the labor division of microbes in the microbial consortia remains unclear. In this study, metagenomic analysis was performed to reveal the community structure and extremozyme systems of a lignocellulolytic microbial consortium, TMC7. The taxonomic affiliation of TMC7 metagenome included members of the genera Ruminiclostridium (42.85%), Thermoanaerobacterium (18.41%), Geobacillus (10.44%), unclassified_f__Bacillaceae (7.48%), Aeribacillus (2.65%), Symbiobacterium (2.47%), Desulfotomaculum (2.33%), Caldibacillus (1.56%), Clostridium (1.26%), and others (10.55%). The carbohydrate-active enzyme annotation revealed that TMC7 encoded a broad array of enzymes responsible for cellulose and hemicellulose degradation. Ten glycoside hydrolases (GHs) endoglucanase, 4 GHs exoglucanase, and 6 GHs β-glucosidase were identified for cellulose degradation; 6 GHs endo-β-1,4-xylanase, 9 GHs β-xylosidase, and 3 GHs β-mannanase were identified for degradation of the hemicellulose main chain; 6 GHs arabinofuranosidase, 2 GHs α-mannosidase, 11 GHs galactosidase, 3 GHs α-rhamnosidase, and 4 GHs α-fucosidase were identified as xylan debranching enzymes. Furthermore, by introducing a factor named as the contribution coefficient, we found that Ruminiclostridium and Thermoanaerobacterium may be the dominant contributors, whereas Symbiobacterium and Desulfotomaculum may serve as "sugar cheaters" in lignocellulose degradation by TMC7. Our findings provide mechanistic profiles of an array of enzymes that degrade complex lignocellulosic biomass in the microbial consortium TMC7 and provide a promising approach for studying the potential contribution of microbes in microbial consortia.