Browse > Article

Characterization of Two Algal Lytic Bacteria Associated with Management of the Cyanobacterium Anabaena flos-aquae  

Kim, Jeong-Dong (Institute of Industrial Biotechnology, Department of Biological Engineering, Inha University)
Lee, Choul-Gyun (Institute of Industrial Biotechnology, Department of Biological Engineering, Inha University)
Publication Information
Biotechnology and Bioprocess Engineering:BBE / v.11, no.5, 2006 , pp. 382-390 More about this Journal
Abstract
Various microorganisms were isolated from the surface waters and sediments of eutrophic lakes and reservoirs in Korea to enable an investigation of bacteria having algal lytic activities against Anabaena flos-aquae when water blooming occurs and to study enzyme profiles of algal lytic bacteria. Two bacterial strains, AFK-07 and AFK-13, were cultured, characterized and identified as Acinetobacter johnsonii and Sinorhizobium sp., respectively. The A. johnsonii AFK-07 exhibited a high level of degradatory activities against A. flos-aquae, and produced alginase, caseinase, lipase, fucodian hydrolase, and laminarinase. Moreover, many kinds of glycosidase, such as ${\beta}-galactosidase,\;{\beta}-glucosidase,\;{\beta}-glucosaminidase,\;and\; {\beta}-xylosidase$, which hydrolyzed ${\beta}-O-glycosidic$ bonds, were found in cell-free extracts of A. johnsonii AFK-07. Other glycosidases such as ${\alpha}-galactosidase,\;{\alpha}-N-Ac-galactosidase,\;{\alpha}-mannosidase,\; and\;{\alpha}-L-fucosidase$, which cleave ${\alpha}-O-glycosidic$ bonds, were not identified in AFK-07. In the Sinorhizobium sp. AFK-13, the enzymes alginase, amylase, proteinase (caseinase and gelatinase), carboxymethyl-cellulase (CMCase), laminarinase, and lipase were notable. No glycosidase was produced in the AFK-13 strain. Therefore, the enzyme system of A. johnsonii AFK-07 had a more complex mechanism in place to degrade the cyanobacteria cell walls than did the enzyme system of Sinorhizobium sp. AFK-13. The polysaccharides or the peptidoglycans of A. flos-aquae may be hydrolyzed and metabolized to a range of easily utilized monosaccharides or other low molecular weight organic substances by strain AFK-07 of. A. johnsonii, while the products of polysaccharide degradation or peptidoglycans were more likely to be utilized by Sinorhizobium sp. AFK-13. These bacterial interactions may offer an alternative effective approach to controlling the water choking effects of summer blooms affecting our lakes and reservoirs.
Keywords
hydrolytic-enzymes; algal lytic bacteria; Acinetobacter johnsonii; Sinorhizobium sp.; Anabaena flos-aquae;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Harada, K. I. (1996) Chemistry and detection of micro-cystins. In: M. F. Watanabe, K. I. Harada, W. W. Carmichael, and H. Fujiki (eds.). Toxic Microcystis. CRC press, London, UK
2 Burnham, J. C., S. A. Collart, and B. W. Highison (1981) Entrapment and lysis of the cyanobacterium Phormidium luridum by aqueous colonies of Myxococcus xanthus $PCO_2$. Arch. Microbiol. 129: 285-294   DOI
3 Burnham, J. C., T. Stecak, and G. Locher (1976) Extracellularsis of the blue-green algae Phormidium luridum by Bdellovibrio bacteriovorus. J. Phycol. 12: 306-313
4 Yamamoto, Y. and K. Suzuki (1990) Distribution and algal-lysing activity of fruiting myxobacteria in Lake Suwa. J. Phycol. 26: 457-462   DOI
5 Castenholz, R. W. (1988) Culturing methods for cyanobacteria. Methods Enzymol. 167: 68-92   DOI
6 De Ley, J. (1970) Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J. Bacteriol. 101: 738-754
7 Marmur, J. and P. Doty (1962) Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5: 109-118   DOI
8 Felsenstein, J. (1992) PHYLIP: Phylogenetic Inference Package. Version 3.5. Seattle, University of Washington, Washington, DC, USA
9 Jarvis, B. D. W, S. Sivakumaran, S. W. Tighe, and M. Gillis (1996) Identification of Agrobacterium and Rhizo-bium species based on cellular fatty acid composition. Plant Soil 184: 143-158   DOI
10 Yokota, A., T. Sakane, K. Ophel, and H. Sawada (1993) Further studies on the cellular fatty acid composition of Rhizobium and Agrobacterium species. IFO Res. Comm. 16: 86-94
11 Na, K.-I., M.-D. Kim, W.-K. Min, J.-A. Kim, W.-J. Lee, D.-O. Kim, K. M. Park, and J.-H. Seo (2005) Expression and purification of ubiquitin-specific protease (UBP1) of Saccharomyces cerevisiae in recombinant Escherichia coli. Biotechnol. Bioprocess Eng. 10: 599-602   과학기술학회마을   DOI   ScienceOn
12 Sallal, A. K. (1994) Lysis of cyanobacteria with Flexibacter spp. isolated from domestic sewage. Microbios 11: 51-61
13 Hrmova, M. and G. B. Fincher (2001) Structure-function relationships of beta-D-glucan endo- and exohydrolases from higher plants. Plant Mol. Biol. 47: 73-91   DOI   ScienceOn
14 Guha, S. and P. R. Jaffe (1996) Biodegradation kinetics of phenanthrene partitioned into the micellar phase of non-ionic surfactants. Environ. Sci. Technol. 30: 605-611   DOI   ScienceOn
15 Daft, M. J. and W. D. Stewart (1971) Bacterial pathogens of freshwater blue-green algae. New Phytol. 70: 819-829   DOI   ScienceOn
16 Tsuchiya, Y., M. F. Watanabe, and M. Watanabe (1992) Volatile organic sulfur compounds associated with blue-green algae from inland waters of Japan. Water Sci. Technol. 25: 123-130
17 De Ley, J. and J. Van Muylem (1963) Some applications of deoxyribonucleic acid base composition in bacterial taxonomy. Antonie van Leeuwenhoek J. Microbiol. Serol. 29: 344-358
18 Gummadi, S. N. and K. Kumar (2005) Production of extracellular water insoluble beta-l,3-glucan (curdlan) from Bacillus sp. SNC07. Biotechnol. Bioprocess Eng. 10: 546-551   과학기술학회마을   DOI   ScienceOn
19 Rippka, R. (1988) Isolation and purification of cyanobacteria. Methods Enzymol. 167: 3-27   DOI
20 Shoda, M. and Y. Sugano (2005) Recent advances in bacterial cellulose production. Biotechnol. Bioprocess Eng. 10: 1-8   과학기술학회마을   DOI   ScienceOn
21 Hartig, C., N. Loffhagen, and W Babel (1999) Glucose stimulates a decrease of the fatty acid saturation degree in Acinetobacter calcoaceticus. Arch. Microbiol. 171: 166-172   DOI
22 Mitsutani, A., A. Uchida, and Y. Ishida (1988) Occurrence of blue-green algae and algal lytic bacteria in Lake Biwa. Bull. Jap. Soc. Microbiol. Ecol. 2: 21-28
23 Kang, S.-I, Y.-B. Jang, Y.-J. Choi, and J.-Y. Kong (2005) Purification and properties of a collagenolytic protease produced by marine bacterium Vibrio vulnificus CYK279H. Biotechnol. Bioprocess Eng. 10: 593-598   과학기술학회마을   DOI   ScienceOn
24 Ral, L. C., H. D. Kumar, F. H. Mohn, and C. J. Soeder (2000) Services of algae to the environment. J. Microbiol. Biotechnol. 10: 119-136   DOI   ScienceOn
25 Reyssac, S. J. and M. Pletikosic (1990) Cyanobacteria in fishponds. Aquaculture 88: 1-20   DOI
26 Nigam, P., G. Armour, I. M. Banat, D. Singh, and R. Marchant (2000) Physical removal of textile dyes from effluents and solid-state fermentation of dye-adsorbed agricultural residues. Bioresour. Technol. 72: 219-226   DOI   ScienceOn
27 Wayne, L. G., R. C. Good, A. Tsang, R. Butler, D. Dawson, D. Groothuis, W. Gross, J. Hawkins, J. Kilbum, and M. Kubin (1993) Serovar determination and molecular taxo-nomic correlation in Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum: a cooperative study of the International Working Group on Mycobacterial Taxonomy. Int. J. Syst. Bacteriol. 43: 482-489   DOI
28 Graham, P. H., M. J. Sadowsky, and S. W. Tighe (1995) Differences among strains of Bradyrhizobium in fatty acid-methyl ester analysis. Can. J. Microbiol. 41: 1038-1042   DOI
29 Mcguire, R. M., J. M. Jones, E. G. Means, and G. Lzaguire (1984) Controlling attached blue-green algae with copper sulfate. Res. Technol. 27: 60-65
30 Shilo, M. (1970) Lysis of blue-green algae by myxobacter. J.Bacteriol. 104:453-461
31 Yoon, J.-H., S.-T. Lee, S.-B. Kim, W. Y. Kim, M. Goodfellow, and Y.-H. Park (1997) Restriction fragment length polymorphisms analysis of PCR-amplified 16S ribosomal DNA for rapid identification of Saccharomonospora strains. Int. J. Syst. Bacteriol. 47: 111-114   DOI
32 Lee, W.-J. and K.-S. Bae (2001) The phylogenetic relationship of several Osillatorian cyanobacteria, forming blooms of Daecheong reservoirs, based on partial 16S rRNA gene sequences. J. Microbiol. Biotechnol. 11: 504-507   과학기술학회마을
33 Saitou, N. and M. Nei (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
34 Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254   DOI   ScienceOn
35 Slater, G. P. and V. C. Blok (1983) Volatile compounds of the cyanophyceae - a review. Water Sci. Technol. 15: 181-190
36 Stackebrandt, E. and W. Liesack (1993) Nucleic acids and classification. In: M. Goodfellow and A. G. O. Donnell (eds.J. Handbook of New Bacterial Systematics. Academic press, London, UK
37 Warren, R. A. (1996) Microbial hydrolysis of polysaccharides. Ann. Rev. Microbiol. 50: 183-212   DOI   ScienceOn
38 Somogyi, M. (1952) Notes in sugar determination. J. Bio. Chem. 195: 19-23
39 Kim, C. H., Y. K. Choi, and B. R. Min (1997) Lysis of Anabaena cylindrica (cyanobacterium) cell wall by extracellular enzyme of Moraxella sp. CK-1. Kor. J. Environ. Biol. 15: 89-97
40 Carmichael, W. W. (1994) The toxins of cyanobacteria. Sci. Am. 270: 64-72   DOI
41 Kobayashi, H. and B. E. Ritmann (1982) Microbial removal of hazardous organic compounds. Environ. Sci. Technol. 16: 170-183   DOI
42 Yamamoto, Y., T. Kouchiwa, Y. Hodoki, K. Hotta, H. Uchida, and K.-I. Harada (1998) Distribution and identification of actinomycetes lysing cyanobacteria in a eutro-phic lake. J. Appl. Phycol. 10: 391-397   DOI
43 Gerber, G. B., A. Leonard, and P. Hantson (2002) Carcinogenicity, mutagenicity and teratogenicity of manganese compounds. Crit. Rev. Oncol. Hematol. 42: 25-34   DOI   ScienceOn
44 Gonzalez, J. M., W. B. Whitman, R. E. Hodson, and M. A. Moran (1996) Identifying numerically abundant culturable bacteria from complex communities: an example from a lignin enrichment culture. Appl. Environ. Microbiol. 62: 4433-4440
45 Nelson, N. J. (1955) Colorimetric analysis of sugars. Methods Enzymol. 3: 85-86
46 Khan, Z. U. M., Z. U. T. Begum, R. Mandal, and M. Z. Hossain (1994) Cyanobacteria in rice soils. World J. Microbiol. Biotechol. 10: 296-298   DOI   ScienceOn
47 Gerhardt, P., R. G. F. Murray, W. A. Wood, and N. R. Krieg (1994) Methods for general and molecular bacteriology. American Society for Microbiology Press, Washington, DC, USA
48 Fay, P. (1992) Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol. Rev. 56: 340-373