• Title/Summary/Keyword: Fruiting body production

Search Result 131, Processing Time 0.026 seconds

Production of Fruiting Body Using Cultures of Entomopathogenic Fungal Species (분리된 동충하초 균주를 이용한 자실체 생산)

  • Sung, Jae-Mo;Choi, Young-Sang;Lee, Hyun-Kyung;Kim, Sang-Hee;Kim, Yong-Ook;Sung, Gi-Ho
    • The Korean Journal of Mycology
    • /
    • v.27 no.1 s.88
    • /
    • pp.15-19
    • /
    • 1999
  • One hundred and six Cordyceps cultures including five cultures of Paecilomyces tenuipes were used for production of artificial fruiting body. In the test of artificial fruiting body formation, no fruiting bodies were induced on media containing PDA and ground silkworm pupae with liquid nitrogen. The best fruiting body formation was showed on media which mixed at the ratio of 1 unsticky rice to 3.5 water. But fruiting bodies formed on media mixed at the ratio 1 unpolished rice to 2.5 water. Optimal temperature in inducing artificial fruiting body was at $20^{\circ}C$. Twenty seven isolates were selected as good cultures for production of artificial fruiting body. Maturation of fruiting bodies incubated on rice grain media was completed for about 50 to 65 days.

  • PDF

Identification of the Genes Involved in the Fruiting Body Production and Cordycepin Formation of Cordyceps militaris Fungus

  • Zheng, Zhuang-Li;Qiu, Xue-Hong;Han, Ri-Chou
    • Mycobiology
    • /
    • v.43 no.1
    • /
    • pp.37-42
    • /
    • 2015
  • A mutant library of Cordyceps militaris was constructed by improved Agrobacterium tumefaciens-mediated transformation and screened for degradation features. Six mutants with altered characters in in vitro and in vivo fruiting body production, and cordycepin formation were found to contain a single copy T-DNA. T-DNA flanking sequences of these mutants were identified by thermal asymmetric interlaced-PCR approach. ATP-dependent helicase, cytochrome oxidase subunit I and ubiquitin-like activating enzyme were involved in in vitro fruiting body production, serine/threonine phosphatase involved in in vivo fruiting body production, while glucose-methanol-choline oxidoreductase and telomerase reverse transcriptase involved in cordycepin formation. These genes were analyzed by bioinformatics methods, and their molecular function and biology process were speculated by Gene Ontology (GO) analysis. The results provided useful information for the control of culture degeneration in commercial production of C. militaris.

Optimum Conditions for Artificial Fruiting Body Formation of Cordyceps cardinalis

  • Kim, Soo-Young;Shrestha, Bhushan;Sung, Gi-Ho;Han, Sang-Kuk;Sung, Jae-Mo
    • Mycobiology
    • /
    • v.38 no.2
    • /
    • pp.133-136
    • /
    • 2010
  • Stromatal fruiting bodies of Cordyceps cardinalis were successfully produced in cereals. Brown rice, German millet and standard millet produced the longest-length of stromata, followed by Chinese pearl barley, Indian millet, black rice and standard barley. Oatmeal produced the shortest-length of fruiting bodies. Supplementation of pupa and larva to the grains resulted in a slightly enhanced production of fruiting bodies; pupa showing better production than larva. 50~60 g of brown rice and 10~20 g of pupa mixed with 50~60 mL of water in 1,000 mL polypropylene (PP) bottle was found to be optimum for fruiting body production. Liquid inoculation of 15~20 mL per PP bottle produced best fruiting bodies. The optimal temperature for the formation of fruiting bodies was $25^{\circ}C$, under conditions of continuous light. Few fruiting bodies were produced under the condition of complete darkness, and the fresh weight was considerable low, compared to that of light condition.

Heterothallic Type of Mating System for Cordyceps cardinalis

  • Sung, Gi-Ho;Shrestha, Bhushan;Han, Sang-Kuk;Kim, Soo-Young;Sung, Jae-Mo
    • Mycobiology
    • /
    • v.38 no.4
    • /
    • pp.282-285
    • /
    • 2010
  • Cordyceps cardinalis successfully produced its fruiting bodies from multi-ascospore isolates. However, subcultures of multiascospore isolates could not produce fruiting bodies after few generations. Fruiting body production also differed from sector to sector of the same isolate. Single ascospore isolates were then co-inoculated in combinations of two to observe the fruiting characteristics. Combinations of certain isolates produced perithecial stromata formation, whereas other combinations did not produce any fruiting bodies. These results show that C. cardinalis is a heterothallic fungus, requiring two isolates of opposite mating types for fruiting body production. It was also shown that single ascospore isolates are hermaphrodites.

Effect of Preservation Periods and Subcultures on Fruiting Body Formation of Cordyceps militaris In Vitro

  • Sung, Jae-Mo;Park, Young-Jin;Lee, Je-O;Han, Sang-Kuk;Lee, Won-Ho;Choi, Sung-Keun;Shrestha, Bhushan
    • Mycobiology
    • /
    • v.34 no.4
    • /
    • pp.196-199
    • /
    • 2006
  • Effects of various preservation periods and subcultures on fruiting body formation of Cordyceps militaris were investigated using EFCC C-10995 single ascospore strains. Fruiting body formation by original strains was profuse when preserved at $4^{\circ}C$ for $5{\sim}6$ months. Fruiting from subcultures was stable till second to sixth subcultures, after which it decreased sharply. The more the colony color of subcultures changed, the less the fruiting bodies formed. Liquid inoculum preparation of single ascospore strains in the same or separate broths did not affect fruiting body formation. Similarly, two strains C-10995-3 and C-10995-6 in different numbers during liquid inoculum preparation produced similar fruiting bodies.

Fruiting Body Formation of Cordyceps militaris from Multi-Ascospore Isolates and Their Single Ascospore Progeny Strains

  • Shrestha, Bhushan;Han, Sang-Kuk;Sung, Jae-Mo;Sung, Gi-Ho
    • Mycobiology
    • /
    • v.40 no.2
    • /
    • pp.100-106
    • /
    • 2012
  • Interest in commercial cultivation and product development of Cordyceps species has shown a recent increase. Due to its biochemical and pharmacological effects, Cordyceps militaris, commonly known as orange caterpillar fungus, is being investigated with great interest. Cultivation of C. militaris has been practiced on a large scale in order to fulfill a demand for scientific investigation and product development. Isolates of C. militaris can be easily established from both spores and tissue. For isolation of spores, ascospores released from mature stromata are trapped in sterile medium. Multi-ascospore isolates, as well as combinations of single ascospore strains, are used for production of fruiting bodies. Progeny ascospore strains can be isolated from artificial fruiting bodies, thus, the cycle of fruiting body production can be continued for a long period of time. In this study, we examined fruiting body production from multi-ascospore isolates and their progeny strains for three generations. $F_1$ progeny strains generally produced a larger number of fruiting bodies, compared with their mother multi-ascospore isolates; however, $F_2$ and $F_3$ progeny strains produced fewer fruiting bodies. Optimum preservation conditions could help to increase the vitality of the progeny strains. In order to retain the fruiting ability of the strains, further testing of various methods of preservation and different methods for isolation should be performed.

The Fruiting Body Formation of Oudemansiella radicata in the Sawdust of Oak (Quercus variabilis) Mixed with Rice Bran

  • Shim, Jae-Ouk;Chang, Kwang-Choon;Kim, Tae-Hyun;Lee, Youn-Su;Lee, U-Youn;Lee, Tae-Soo;Lee, Min-Woong
    • Mycobiology
    • /
    • v.34 no.1
    • /
    • pp.30-33
    • /
    • 2006
  • To screen additives and their mixed ratio suitable for the mycelial growth and fruiting body formation of Oudemansiella radicata in the oak sawdust, additives such as rice bran, fermented soybean powder and wheat bran were used. Generally, the mycelial growth of O. radicata has been stable on oak sawdust mixed with rice bran of $5{\sim}20%$. In case that O. radicata was cultured for about 30 days at $22{\pm}1^{\circ}C$ under the illumination (350 lux) of 12 hours and moisture condition of $90{\pm}5%$, the primordia have been formed gradually from red-brown crusts covering the surface of oak sawdust media. Based on the experimental results from 9 strains of O. radicata, fruiting bodies were produced widely on oak sawdust medium mixed with rice bran of 5 to 30%. Even though fruiting bodies of O. radicata have been produced well on oak sawdust media mixed with rice bran, fruiting bodies of O. radicata were produced intensively on oak sawdust media mixed with rice bran of 10%. Therefore, this result will provide a basic information for commercial production of fruiting body of wild O. radicata. This result is the first report associated with an artificial fruiting body formation of O. radicata in Korea.

Isolation and Characterization of Monokaryotic Strains of Lentinula edodes Showing Higher Fruiting Rate and Better Fruiting Body Production

  • Ha, Byeong-Suk;Kim, Sinil;Ro, Hyeon-Su
    • Mycobiology
    • /
    • v.43 no.1
    • /
    • pp.24-30
    • /
    • 2015
  • The effects of monokaryotic strains on fruiting body formation of Lentinula edodes were examined through mating and cultivation of the mated dikaryotic mycelia in sawdust medium. To accomplish this, monokaryotic strains of L. edodes were isolated from basidiospores of the commercial dikaryotic strains, Chamaram (Cham) and Sanjo701 (SJ701). A total of 703 matings (538 self-matings and 165 outcrosses) were performed, which generated 133 self-mates and 84 outcross mates. The mating rate was 25% and 50% for self-mating and outcross, respectively. The bipolarity of the outcross indicated the multi-allelic nature of the mating type genes. The mating was only dependent on the A mating type locus, while the B locus showed no effect, implying that the B locus is multi-allelic. Next, 145 selected dikaryotic mates were cultivated in sawdust medium. The self-mated dikaryotic progenies showed 51.3% and 69.5% fruiting rates for Cham and SJ701, respectively, while the fruiting rate of the outcross mates was 63.2%. The dikaryotic mates generated by mating with one of the monokaryotic strains, including A20, B2, E1, and E3, showed good fruiting performance and tended to yield high fruiting body production, while many of the monokaryotic strains failed to form fruiting bodies. Overall, these findings suggest that certain monokaryotic strains have traits enabling better mating and fruiting.

The Production of Artificial Fruiting Body of Paecilomyces japonica (Paecilomyces japonica 인공 자실체 형성)

  • Choi, In-Young;Choi, Joung-Sik;Lee, Wang-Hyu
    • The Korean Journal of Mycology
    • /
    • v.27 no.2 s.89
    • /
    • pp.87-93
    • /
    • 1999
  • This study was conducted to investigate the morphological characteristics and cultural conditions for artificial fruiting body(synnemata) production of Paecilomyces japonica. In the morphological characteristics of P. japonica, the size of it's conidia was ranged from $5.0{\sim}1.5\;to\;7.9{\sim}2.4\;{\mu}m$. The artificial fruiting body showed yellow in color, shape was confirmed ellipsoidal or obovoid type, and the length was $50.6{\sim}104.5\;mm$. The mycelial growth on the PDA medium treated with pH7, at $25^{\circ}C$ was superior to that of other treatments. The formation period of an artificial fruiting body of P. japonica treated with polypropylene and glass bottle culture was 30 days and 50 days, respectively. The length and number of fruiting body was longer and higher in the polypropylene bottle culture than those of the glass bottle culture. As the results, the artificial fruiting body production in the polypropylene bottle increased 1.2g per bottle compared to that of the glass bottle. It also increased in $100{\sim}400\;lx$ illumination, whereas the elongation of synnemata, pinheading and fruiting body growth were inhibited by continuous use of 900 lx illumination. The results of these experiment indicated that fruiting body formation seemed to be lower as the light intensity increased. The fruiting body formation was also dependent on the light color. There was a higher incidence in red color light and fluorescent light treatment than that of incandescent and blue color light. The fruiting body of the naked barley medium had so much better growth compared to other media that it would be able to use for it's production. The growth of fruiting body was affected by $CO_2$ concentration. It increased after putting the lid on the bottle.

  • PDF

Production of Polysaccharide by the Edible Mushroom, Grifola frondosa

  • Kim, Yeon-Ran
    • Mycobiology
    • /
    • v.31 no.4
    • /
    • pp.205-208
    • /
    • 2003
  • The production of polysaccharide according to various developmental stages(mycelium growth, primordium appearance, and fruiting-body formation) in the edible mushroom Grifola frondosa was studied. The cap of the mature mushroom showed the highest amount of polysacchride. Mycelial growth and polysaccharide synthesis were optimal at pH 5 and $20^{\circ}C$. Polysaccharide synthesis was maximal after 12 days of cultivation, whereas maximum mycelial growth was shown after 18 days. Mannose, cellobiose and starch increased the level of polysaccharide as well as growth in submerged culture. Glucose and sucrose appeared to be good substrates for fruiting of Grifola frondosa.