• Title/Summary/Keyword: Frozen soil

Search Result 127, Processing Time 0.025 seconds

Beach and Sanddune Development along the Coastline of the Chungcheong-Namdo Province (충청남도 해안에 발달한 해빈과 해안사구)

  • Kahng, Tay-Gyoon
    • Journal of the Korean earth science society
    • /
    • v.24 no.6
    • /
    • pp.568-577
    • /
    • 2003
  • The purpose of this paper is to examine the geomorphic processes of beach and sanddune development in the Chungcheong-Namdo Province. The sands consist mainly of quartz and feldspar with lesser amounts of mica and other heavy minerals. With the exception of those from the granite, the sands have a very fine texture. Another characteristic of the sand grains is low degrees of roundness and grading indicating that source areas for the material were in the vicinity of the accumulating field. Over the years, the beaches have receded as a response to the decreasing amount of depositional materials. The driving force for the formation and transformation of coastal dunes in the study area is dominant winds from the center of the Siberian High. To some extent, the erosion of coastal dunes has been a global phenomenon. The degradation process occurred most actively when spring tides attacked beaches, berms, and foredunes. The relief and shape of present-day coastal dunes is determined initially by the Pleistocene strata underneath. From the fact that the strata contained traces of frozen structure, it can be inferred that sediment once experienced the process of soil formation.

Studies of Seasonal Variations in Emission Patterns of Landfill Gas VOC (매립지 배출가스 중 휘발성유기화합물의 계절간 조성차에 대한 연구)

  • Kim KH;Oh SI;Sunwoo Y;Choi YJ;Jeon EC;Sa JH;Im JY
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.2
    • /
    • pp.259-268
    • /
    • 2005
  • In this study, we investigated the seasonal variations in the composition and emission patterns of VOC ventilated as landfill gas (LFG) from an urban municipal landfill site during the winter (2002) and summer (2003) period. The results of our study, when examined using the major aromatic VOC components as BTEX, indicated the existence of diverse characteristics in the LFG emissions of VOC. It was found that the relative extent of benzene emission showed most significant increase in the summer season, while most species underwent notable reductions. Despite the presence of certain patterns in the seasonal emissions of BTEX, the gross picture of their emission between summer and winter was not different distinctively so that the wintertime emissions exceed their summer counterparts by about three times. The observations of moderate enhancement in wintertime LFG emissions of BTEX appeared to reflect such environmental changes in the winter season as favorable conditions for LFG ventilation with reduced surface emissions due to frozen soil layers.

Determination of Lipid A Profile of Gram-Negative Bacteria from Arctic Soils Using Mass Spectrometric Approaches (질량분석 시스템을 이용한 극지 토양 유래 신규 미생물의 지질 A 화학적 구조 분석)

  • Hwang, Cheol-hwan;Park, Han-Gyu;Kim, Yun-Gon
    • KSBB Journal
    • /
    • v.31 no.4
    • /
    • pp.263-269
    • /
    • 2016
  • For decades, the microorganisms in arctic soils have been newly discovered according to the climate change and global warming. In this study, the chemical structure of a lipid A molecule from Pseudomonas sp. strain PAMC 28615 which was newly discovered from arctic soils was characterized by mass spectrometric approaches such as matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and MALDI multi-stage tandem mass spectrometry (MS). First, lipopolysaccharide (LPS) from Pseudomonas sp. strain PAMC 28615 was extracted and subsequently hydrolyzed to obtain the lipid A. The parent ion peak at m/z 1632 was determined by MALDI-TOF MS, which also can validate our lipid A purification method. For detailed structural determination, we performed the multiple-stage tandem mass analysis ($MS^4$) of the parent ion, and subsequently the abundant fragment ions in each MS stage are tested. The fragment ions in each MS stage were produced from the loss of phosphate groups and fatty acyl groups, which could be used to confirm the composition or the position of the lipid A components. Consequently, the mass spectrometry-based lipid A profiling method could provide the detail chemical structure of lipid A from the Pseudomonas sp. strain PAMC 28615 as an arctic bacterium from the frozen arctic soil.

Effect of Sample Preparation on Prediction of Fermentation Quality of Maize Silages by Near Infrared Reflectance Spectroscopy

  • Park, H.S.;Lee, J.K.;Fike, J.H.;Kim, D.A.;Ko, M.S.;Ha, Jong Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.5
    • /
    • pp.643-648
    • /
    • 2005
  • Near infrared reflectance spectroscopy (NIRS) has become increasingly used as a rapid, accurate method of evaluating some chemical constituents in cereal grains and forages. If samples could be analyzed without drying and grinding, then sample preparation time and costs may be reduced. This study was conducted to develop robust NIRS equations to predict fermentation quality of corn (Zea mays) silage and to select acceptable sample preparation methods for prediction of fermentation products in corn silage by NIRS. Prior to analysis, samples (n = 112) were either oven-dried and ground (OD), frozen in liquid nitrogen and ground (LN) and intact fresh (IF). Samples were scanned from 400 to 2,500 nm with an NIRS 6,500 monochromator. The samples were divided into calibration and validation sets. The spectral data were regressed on a range of dry matter (DM), pH and short chain organic acids using modified multivariate partial least squares (MPLS) analysis that used first and second order derivatives. All chemical analyses were conducted with fresh samples. From these treatments, calibration equations were developed successfully for concentrations of all constituents except butyric acid. Prediction accuracy, represented by standard error of prediction (SEP) and $R^2_{v}$ (variance accounted for in validation set), was slightly better with the LN treatment ($R^2$ 0.75-0.90) than for OD ($R^2$ 0.43-0.81) or IF ($R^2$ 0.62-0.79) treatments. Fermentation characteristics could be successfully predicted by NIRS analysis either with dry or fresh silage. Although statistical results for the OD and IF treatments were the lower than those of LN treatment, intact fresh (IF) treatment may be acceptable when processing is costly or when possible component alterations are expected.

Analysis on natural vibration characteristics of steel-concrete composite truss beam

  • Jiang, Lizhong;Feng, Yulin;Zhou, Wangbao;He, Binbin
    • Steel and Composite Structures
    • /
    • v.26 no.1
    • /
    • pp.79-87
    • /
    • 2018
  • In order to study the natural vibration characteristics of steel-concrete composite truss beam (SCCTB), the influence of multiple factors such as interface slip, shear deformation and moment of inertia are considered. Afterwards, based on the Hamilton principle the vibration control differential equation and natural boundary conditions of SCCTB are deduced. By solving SCCTB differential equations of vibration control, an analytical calculation method is proposed for analyzing the natural vibration characteristics of SCCTB. The natural frequencies of SCCTBs with different degrees of shear connection and effective lengths are calculated by using the analytical method, and the results are compared against those obtained from ANSYS finite element numerical calculation method. The results show that the analytical method considering the influence factors such as interface slip, shear deformation and moment of inertia are in good agreement with those obtained from ANSYS finite element numerical calculation method. This evidences the correctness of the analytical method and show that the method proposed exhibits improvement over the previously developed theories for the natural vibration characteristics of SCCTB. Finally, based on the analytical method, the influence factors of SCCTB natural vibration characteristics are analyzed. The results indicate that the influence of interface slip stiffness on SCCTB's natural frequency is more than 10% and therefore cannot be neglected. Moreover, shear deformation has an effect of more than 35% on SCCTB's natural frequency and the effect cannot be ignored either in this case too.

Heat Transfer Equation and Finite Element Analysis Considering Frozen Ground Condition the Cyclic Loading (지반의 동결조건을 고려한 열전도 구성방정식과 유한요소해석)

  • Kim, Young-Seok;Kang, Jae-Mo;Hong, Seung-Seo;Kim, Kwang-Jin
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.3
    • /
    • pp.39-45
    • /
    • 2010
  • When the ground temperature drops below $0^{\circ}C$, wet soils expand due to the ice formation in their porous space. This results in frost heave which causes structural stability problems. Frost heave is attributed by several factors such as physical soil properties and heat transfer including pore water phase change. Due to the complex physical phenomena, reliable and verified multi-dimensional numerical models for frost heave problems are still in a research stage. This study presents an efficient and simple method of overcoming numerical problems associated with sudden jump of heat capacity due to the phase change from water to ice in the pore space. This paper proposes heat transfer equation and finite element method when the saturated soils or porous rocks are subjected to freezing. Numerical analyses using the proposed method agree well with the known closed form solution and the laboratory test results.

  • PDF

Soil displacement from frost heave on forest road cut-slopes

  • Lee, Myeong-Kyo;Lee, Joon-Woo;Choi, Sungmin;Kim, Hyoun-Sook
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.2
    • /
    • pp.177-184
    • /
    • 2018
  • The frost heave process from repeated freezing and thawing actions in winter on forest road cut-slopes is important for forest road maintenance and management. This study investigated the damages of the forest heave process on forest road cut-slopes by measuring the changes in the road-cut surface elevation and sediment production and by conducting vegetation surveys which were aimed at providing information for forest road maintenance plans. The temperature and humidity differences were determined between the north and south cut-slopes. T-test showed that the north slope had a lower temperature and humidity than that of the south slope. Field observations also confirmed frozen soils on the north slopes, indicating that the north slopes are susceptible to frost heave. Sediment was converted to dry weight per unit area ($g/m^2$). T-test showed that the north slope produced more sediment than that of the south slope. The study confirmed that more frost heave occurred on the north cut-slopes than on the south cut-slopes. Vegetation surveys were conducted on five cut-slope plots. Considering the dominant species found above the cut-slopes, vegetations in all the plots are expected to succeed to pine and oak in the future. The dominant species appearing on the cut-slopes of the study area were exotic species because the elapsed time of the site was only 2 - 4 years.

Application of SDAHL-74 Watershed Model to a Long Term Runoff Analysis in the Mountainous Watershed (산지유역에 대한 USDAHL-74 유역수문모형의 장기유출 해석적용)

  • 권순국;고덕구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.2
    • /
    • pp.53-63
    • /
    • 1987
  • Due to their wide range of application, deterministic comprehensive hydrologic models using digital computers have been developed in all countries of the world and researches are being undertaken for their appropriate applications. The aim of this study has been to demonstrate the practical implementation of a physically based distributed hydrologic model, the USDAHL-74 model and to investigate its ability to simulate the long term estimate of water balance quantities in a Korean mountainous watershed. Application of the model to Dochuk watershed indicates the following results. 1.Since the USDAHL-74 model includes all the major components of the hydrologic cycle in agricultural watersheds, thus is comprehnsive, the model seems to have a wide range of application from the fact that simulation results obtained are not only runoff volumes m various time units but their spatial variation as well as even soil moisture within the watershed. 2.An approximate calibration to determine the parameter values in the model using various data obtained from D0chuk shed shows that the simulation error of yearly runoff volume is only 0.6 % and a correlation coefficient between observed daily runoff volume and simulated one is 0.91 in all calibrated period.3.As a verification test of the model, runoff volumes are simulated using 1986 year data without changing the parameter values determined by 1985 year data. The tests show that the USDAHL-74 model is a flexible tool and that realistic production to simulate the long term estimate of runoff in Korean mountainous watershed could be obtained using only a short period of calibration.4. Despite of the encouraging results, there still remain minor problems concerning the practical application of the model to improve the result of simulations. Some of these are the small descrepancies between observed and simulated daily runoff volume appeared in the vicinity of peaks and the recession of1 the daily hydrographs and the model performance for the frozen ground and melting process in the model. 5. Alough the use of parameter with physical significance and the ability to improve calibrations on the basis of physical reasoning represents advantages in the simulation for ungaged watersheds, further researches are needed to use the USDAHL-74 mode to simulate runoff in ungaged watersheds.

  • PDF

Characteristics of Sand-Silt Mixtures during Freezing-Thawing by using Elastic Waves (탄성파를 이용한 모래-실트 혼합토의 동결-융해 특성)

  • Kang, Mingu;Kim, Sangyeob;Hong, Seungseo;Kim, Youngseok;Lee, Jongsub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.5
    • /
    • pp.47-56
    • /
    • 2014
  • In winter season, the pore water inside the ground freezes and thaws repetitively due to the cold air temperature. When the freezing-thawing processes are repeated on the ground, the change in soil particle structure occurs and thus the damage of the infrastructure may be following. This study was performed in order to investigate the stiffness change of soils due to the freeze-thaw by using elastic waves. Sand-silt mixtures are prepared with in the silt fraction of 40 %, 60 % and 80 % in weight and in the degree of saturation of 40 %. The specimens are placed into the square freezing-thawing cell by the temping method. For the measurement of the elastic waves, a pair of the bender elements and a pair of piezo disk elements are installed on the cell, and a thermocouple is inserted into soils for the measurement of the temperature. The temperature of the mixtures is decreased from $20^{\circ}C$ to $-10^{\circ}C$ during freezing, is maintained at $-20^{\circ}C$ for 18 hours, is gradually increased up to the room temperature of $20^{\circ}C$ to thaw the specimens. The shear waves, the compressional waves and the temperature are measured during the freeze-thaw process. The experimental result indicates that the shear and the compressional wave velocities after thawing are smaller than those of before freezing. The velocity ratio of after thawing to before freezing of shear wave is smaller than that of the compressional wave. As silt fraction increases from 40 % to 80 %, the shear and compressional wave velocities are gradually increased. This study suggests that the freezing-thawing process in unsaturated soil loosens the soil particle structure, and the shear wave velocity reflects the effect of freezing-thawing more sensitively than the compressional wave velocity.

Rates and Factors of Path Widening in Seongpanak Hiking Trail of Mount Halla, Jeju Island (한라산 성판악 등산로 노폭의 확대 속도와 요인)

  • Kim, Tae-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.3
    • /
    • pp.296-311
    • /
    • 2008
  • In order to examine the rates and factors of path widening in Mount Halla, the retreat of path sidewalls was monitored at 32 sites of Seongpanak Hiking Trail located between 875 m and 1,400 m in elevation. The mean rate of sidewall retreat for the period 2002-2008 is 50.6 mm, equivalent to 10.0 mm/yr. The retreat rate of frozen period is 19.3 mm/yr, while the rate of unfrozen period is 4.3 mm/yr. The latter is divided into the rainy and dry periods that exhibit the retreat rates of 5.9 mm/yr and 2.9 mm/yr, respectively. The retreat rate of sidewalls is also varied with seasons; winter shows the maximum rate of 42.2 mm/yr, while summer exhibits the minimum rate of 1.3 mm/yr. Spring and fall show the intermediate rates of 13.9 mm/yr and 6.4 mm/yr, respectively. Soil hardness and elevation are not closely related to the retreat rate of sidewalls, even though the retreat rate is larger at the north-faced sidewalls than the south-faced sidewalls during the frozen period. Pipkrake is likely to be the most important factor contributing to the path widening in that the retreat of winter months accounts for 76.7% of the total retreat. The hiking trail is placed under the climatic conditions which develop pipkrake in 85 days annually. In addition, it is usual to observe the path sidewall covered with pipkrake in the freezing month of December and the thawing months of March and April. On the other hand, deflation and rainsplash erosion are not important due to the weak wind speed and the forested trail. Rainwash is also insignificant in that the path has been almost paved to mitigate trampling effects. Although biological activity is not dominant, hikers cause a large retreat of sidewalls in the thawing months since they would walk on the sidewalls to avoid snow-melting pools on the path.