• Title/Summary/Keyword: Frost Model

Search Result 101, Processing Time 0.029 seconds

A Study of Frost Penetration Depth and Frost Heaving in Railway Concrete Track (콘크리트 궤도의 동결깊이 및 동상량 측정 연구)

  • Lee, Daeyoung;Kim, Youngchin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.1
    • /
    • pp.35-41
    • /
    • 2014
  • Many infra suructure such as road, railway, building and utility foundations have been damaged by the repeated freezing and thawing of the soil during winter and spring every year in seasonal frost region. The frost penetration depth is most important factor in the design of structure such as road, railway and building in seasonal frost region. This paper presents the results of calculation of frost penetration depth and frost heaving in concrete track for railway construction. Model concrete track were installed near the railway track in Gangwon, Gyeonggi, Choongbuk province and frost penetration depth were measured using methylene blue frost penetration depth gauge. Model concrete track in Cheolwon, frost heaving of concrete track were also evaluated. The measure of maximum frost penetration depth and frost heaving can be applied to design railway track for cold region in Korea.

Study on Improvement of Frost Occurrence Prediction Accuracy (서리발생 예측 정확도 향상을 위한 방법 연구)

  • Kim, Yongseok;Choi, Wonjun;Shim, Kyo-moon;Hur, Jina;Kang, Mingu;Jo, Sera
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.295-305
    • /
    • 2021
  • In this study, we constructed using Random Forest(RF) by selecting the meteorological factors related to the occurrence of frost. As a result, when constructing a classification model for frost occurrence, even if the amount of data set is large, the imbalance in the data set for development of model has been analyzed to have a bad effect on the predictive power of the model. It was found that building a single integrated model by grouping meteorological factors related to frost occurrence by region is more efficient than building each model reflecting high-importance meteorological factors. Based on our results, it is expected that a high-accuracy frost occurrence prediction model will be able to be constructed as further studies meteorological factors for frost prediction.

Frost Heave of Frost Susceptible Soil According to Performance of Thermo-syphon (열 사이펀 성능에 따른 동상민감성 지반의 거동 비교)

  • Park, Dong-Su;Shin, Mun-Beom;Seo, Young-Kyo
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.10
    • /
    • pp.27-40
    • /
    • 2021
  • The construction method to prevent the frost heave or thaw settlement is called the ground stabilization method, and the thermo-syphon is one of the typical ground stabilization methods. The thermo-syphon has recently been developed with a simple analysis model and thermal analysis has been carried out, but the frost heave of frost susceptible soil was not considered. This study was conducted using ABAQUS internal user subroutine to develop the numerical analysis model (Coupled thermo-mechanical) that can simultaneously perform thermal analysis for the temperature change of the soil according to the thermo-syphon and structural analysis to predict the frost heave of the soil accordingly. As a result of the numerical analysis, the frost heave of the soil decreased as the performance of the thermo-syphon increased. As for the main results, when the thermo-syphon which has contain 25%, 50%, and 100% of refrigerant filling ratio was applied, the reduction ratio of the frost heave was 5.5%, 14.4%, and 21% respectively.

Optimization of hydraulic section of irrigation canals in cold regions based on a practical model for frost heave

  • Wang, Songhe;Wang, Qinze;An, Peng;Yang, Yugui;Qi, Jilin;Liu, Fengyin
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.133-143
    • /
    • 2019
  • An optimal hydraulic section is critical for irrigated water conservancy in seasonal frozen ground due to a large proportion of water leakage, as investigated by in-situ surveys. This is highly correlated with the frost heave of underlain soils in cold season. This paper firstly derived a practical model for frost heave of clayey soils, with temperature dependent thermal indexes incorporating phase change effect. A model test carried out on clay was used to verify the rationality of the model. A novel approach for optimizing the cross-section of irrigation canals in cold regions was suggested with live updated geometry characterized by three unique geometric constraints including slope of canal, ratio of practical flow section to the optimal and lining thickness. Allowable frost heave deformation and tensile stress in canal lining are utilized as standard in computation iterating with geometry updating while the construction cost per unit length is regarded as the eventual target in optimization. A typical section along the Jinghui irrigation canal was selected to be optimized with the above requirements satisfied. Results prove that the optimized hydraulic section exhibits smaller frost heave deformation, lower tensile stress and lower construction cost.

Behavior of frost formed on heat exchanger fins (열교환기 휜에서의 착상 거동)

  • Kim, Jung-Soo;Lee, Kwan-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2334-2339
    • /
    • 2008
  • This paper proposes an improved mathematical model for predicting the frosting behavior on a two-dimensional fin considering the heat conduction of heat exchanger fins under frosting conditions. The model consists of laminar flow equation in airflow, diffusion equation of water vapor for frost layer, and heat conduction equation in fin, and these are coupled together. In this model, the change in three-dimensional airside airflow caused by frost growth is accounted for. The fin surface temperature increased toward the fin tip due to the fin heat conduction. On the contrary, the temperature gradient in the airflow direction(x-dir.) is small throughout the entire fin. The frost thickness in the direction perpendicular to airflow, i.e. z-dir., decreases exponentially toward the fin tip due to non-uniform temperature distribution. The rate of decrease of heat transfer in the airflow direction is high compared to that in the z-direction due to more decrease in the sensible and latent heat rate in x-direction.

  • PDF

Numerical Study of Performance Variation Under Frost and Non-frost Condition of Refrigerating System in the Refrigerator Truck (냉동탑차용 냉장시스템의 착상 및 무착상 상태에서의 성능변화에 관한 해석적 연구)

  • Kim, Sang-Hun;Myung, Chi-Wook;Cho, Hong-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.11
    • /
    • pp.733-740
    • /
    • 2011
  • To analyze the cooling performance in the refrigerator truck according to frost growth, the analytical model of refrigeration system was developed under frost and non-frost condition using EES. The system performance was analyzed with outdoor temperature, storage temperature, outdoor front air velocity and compressor speed in order to investigate the system performance characteristics with operating conditions. Besides, the system performance under frost condition was compared with that under non-frost condition. As a result, the frost thickness was 0.9 mm when the refrigerating capacity of frost condition was decreased by 30%. The maximum of the system COP was shown at compressor speed of 1500 rpm for non-frost and frost condition, simultaneously. The performance under frost condition was more sensitive to the operating condition compared to that under non-frost condition.

Numerical Model with Segregation Potential on Frost Heave and Reliability Assessment for Silty Soils (Segregation Potential 기반 동상 예측 모델 및 실트질 토양을 이용한 동상해석 신뢰성 평가)

  • Jangguen Lee;Zheng Gong;Hyunwoo Jin;Byunghyun Ryu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.9
    • /
    • pp.41-46
    • /
    • 2023
  • Numerical analysis of frost heave is challenging due to the influence of soil and environmental factors. Thermo-hydromechanical coupled analysis relies heavily on excessive input variables and primarily focuses on validating clayey soils, so it is limited to frost susceptible silty soils. An empirical approach based on thermodynamics offers relatively simple frost heave analysis and the advantage of linking constitutive equations with frost heave to enable geomechanical interpretations. In this paper, we introduce an empirical numerical model using the Segregation Potential (SP) and evaluate reliability through comparative analysis with experimental results of frost susceptible silty soils. While the SP model enables frost heave analysis for the given silty soils, further investigation on various silty soils is necessary to gather data on key input variables.

Development of Prediction Model of Frost Penetration Depth on Pavement in Korea (포장도로의 실측값을 활용한 한국형 동결깊이 예측모델 개발)

  • Hong, Seung-Seo;Kim, Young-Seok;Kim, Hak-Seung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.3
    • /
    • pp.47-56
    • /
    • 2010
  • Korea is known to have seasonal frozen ground during a winter season due to climatic and ground conditions. Temperatures below $0^{\circ}C$ cause pavement failure by frost heaving and thaw settlement. A frost protection layer has been constructed in pavements to avoid damage caused by frost action. Anti-frost design methods in Korea have been adopted, which is established in U.S. and Japan. However the characteristics of soils in Korea are different and there are no reasonable modifications to accommodate these characteristics. Therefore, adequate pavement design procedures including seasonal frost action, as well as construction and maintenance practices are required. In this paper, the frost penetration depths along national roads in Korea are presented based on field measurement over several years (1991~2010). The frost penetration depths are analyzed with respect to the Provinces of Korea and sunny/shaded areas.

  • PDF

An estimation method of probability of infection using Reed - Frost model (Reed - Frost 모형을 이용한 전염병 감염 확률 추정)

  • Eom, Eunjin;Hwang, Jinseub;Choi, Boseung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.1
    • /
    • pp.57-66
    • /
    • 2017
  • SIR model (Kermack and McKendrik, 1927) is one of the most popular method to explain the spread of disease, In order to construct SIR model, we need to estimate transition rate parameter and recovery rate parameter. If we don't have any information of the two rate parameters, we should estimate using observed whole trajectory of pandemic of disease. Thus, with restricted observed data, we can't estimate rate parameters. In this research, we introduced Reed-Frost model (Andersson and Britton, 2000) to calculate the probability of infection in the early stage of pandemic with the restriction of data. When we have an initial number of susceptible and infected, and a final number of infected, we can apply Reed - Frost model and we can get the probability of infection. We applied the Reed - Frost model to the Vibrio cholerae pandemic data from Republic of the Cameroon and calculated the probability of infection at the early stage. We also construct SIR model using the result of Reed - Frost model.

Analysis Study of Performance of CO2 Microchannel Evaporator According to Frost Growth (서리성장에 따른 이산화탄소용 마이크로채널 증발기의 성능에 관한 해석적 연구)

  • Shin, Eun-Sung;Cho, Hong-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.10
    • /
    • pp.724-732
    • /
    • 2012
  • The microchannel evaporator with louver fin using carbon dioxide are analyzed according to the frost growth. To predict the performance of microchannel evaporator with the frost growth under low temperature, the simulation condition of previous studies was applied. As a result, the frost thickness increases and its increasing rate is reduced when the operating time increases. Frost thickness increases gradually below the quality of 0.74, and then it decreases rapidly. In addition, the frost growth of present model under same surface temperature is very similar trends with Moallem's test results. In case of low temperature application, the dimensionless frost thickness increases dramatically and it is about 0.86 after 10 minutes.