DOI QR코드

DOI QR Code

Numerical Model with Segregation Potential on Frost Heave and Reliability Assessment for Silty Soils

Segregation Potential 기반 동상 예측 모델 및 실트질 토양을 이용한 동상해석 신뢰성 평가

  • Jangguen Lee (Department of Future & Smart Construction Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Zheng Gong (Department of Civil and Environmental Engineering, University of Science and Technology) ;
  • Hyunwoo Jin (Department of Future & Smart Construction Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Byunghyun Ryu (Department of Future & Smart Construction Research, Korea Institute of Civil Engineering and Building Technology)
  • Received : 2023.08.11
  • Accepted : 2023.08.24
  • Published : 2023.09.01

Abstract

Numerical analysis of frost heave is challenging due to the influence of soil and environmental factors. Thermo-hydromechanical coupled analysis relies heavily on excessive input variables and primarily focuses on validating clayey soils, so it is limited to frost susceptible silty soils. An empirical approach based on thermodynamics offers relatively simple frost heave analysis and the advantage of linking constitutive equations with frost heave to enable geomechanical interpretations. In this paper, we introduce an empirical numerical model using the Segregation Potential (SP) and evaluate reliability through comparative analysis with experimental results of frost susceptible silty soils. While the SP model enables frost heave analysis for the given silty soils, further investigation on various silty soils is necessary to gather data on key input variables.

동상은 토양과 외부 환경적 영향으로 인해 수치해석적 평가에 어려움이 있다. 열-수리-역학 연계 해석은 입력변수가 과도하고 주로 점토성 토양에 대한 검증에 국한되어 실제 동상에 민감한 실트질 토양에 적용하기에는 한계가 있다. 열역학 관점의 경험적 접근 방법은 비교적 간단하게 동상 해석이 가능하고, 구성방정식과 동상 해석 결과를 연계하여 역학적 해석도 가능하다는 장점을 보유하고 있다. 본 논문에서는 Segregation Potential(SP)을 이용한 동상 해석 모델을 소개하고 실트질 함유량에 따른 동상 실험 결과와 비교·분석을 통해 신뢰성을 평가하고 있다. SP 모델은 본 연구에서 검토된 실트질 토양의 동상 해석이 가능하지만, 다양한 실트질 토양에 대한 추가적인 검토를 통해 핵심 입력변수에 대한 자료수집이 필요하다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 한국건설기술연구원 연구운영비지원(주요사업) 사업으로 수행되었습니다(과제번호 20230081-001, 극한건설 환경 구현 인프라 및 TRL6 이상급 극한건설 핵심기술 개발).

References

  1. Akagawa, S. (1988), Experimental study of frozen fringe characteristics, Cold Regions Science and Technology, Vol. 15, pp. 209~223. https://doi.org/10.1016/0165-232X(88)90068-7
  2. Azmatch, T. F., Sego, D. C., Arenson, L. U. and Biggar, K. W. (2011), Tensile strength and stress-strain behaviour of Devon silt under frozen fringe conditions, Cold Regions Science and Technology, Vol. 68, pp. 85~90. https://doi.org/10.1016/j.coldregions.2011.05.002
  3. Bilodeau, J. P., Dore, G. and Pierre, P. (2008), Gradation influence on frost susceptibility of base granular materials, International Journal of Pavement Engineering, Vol. 9, No. 6, pp. 397~411. https://doi.org/10.1080/10298430802279819
  4. Bronfenbrener, L. and Bronfenbrener, R. (2010), Modeling frost heave in freezing soil, Cold Regions Science and Technology, Vol. 61, No. 1, pp. 43~64. https://doi.org/10.1016/j.coldregions.2009.12.007
  5. Chamberlain, E. J. (1981), Frost susceptibility of soil, review of index tests, Cold Regions Research and Engineering Lab Hanover NH, Hanover
  6. Chen, S. X. (2008), Thermal conductivity of sands, Heat Mass Transfer, Vol. 44, pp. 1241~1246.
  7. Hendry, M. T., Onwude, L. U. and Sego, D. C. (2016), A laboratory investigation of the frost heave susceptibility of finegrained soil generated from the abrasion of a diorite aggregate, Cold Regions Science and Technology, Vol. 123, pp. 91~98. https://doi.org/10.1016/j.coldregions.2015.11.016
  8. Henry, K. S. (2000), A review of the thermodynamics of frost heave, Cold Regions Research and Engineering Lab Hanover NH, Hanover, pp. 1~111.
  9. JGS 0172 (2003, 2009), Test method for frost susceptibility of soils, Japan Geotechnical Society; Tokyo, Japan, pp. 1~9.
  10. Jin, H, Ryu, B. H. and Lee, J. (2022), Assessment of the effect of fines content on frost susceptibility via simple frost heave testing and SP determination, Geomechanics and Engineering, Vol. 30, No. 4, pp. 393~399. https://doi.org/10.12989/GAE.2022.30.4.393
  11. Konrad, J. M. and Morgenstern, N. R. (1981), The segregation potential of a freezing soil, Canadian Geotechnical Journal, Vol. 18, pp. 482~491. https://doi.org/10.1139/t81-059
  12. Konrad, J. M. (1994), Sixteenth Canadian geotechincal colloquium: Frost heave in soils: Concepts and engineering, Canadian Geotechnical Journal, Vol. 31, pp. 223~245. https://doi.org/10.1139/t94-028
  13. Michalowski, R. L. (1993), A constitutive model of saturated soils for frost heave simulations, Cold Regions Science and Technology, Vol. 22, No. 1., pp. 47~63. https://doi.org/10.1016/0165-232X(93)90045-A
  14. Michalowski, R. L. and Zhu, M. (2006), Frost Heave Modelling Using Porosity Rate Function, International Journal for Numerical and Analytical Methods in Geomechanics, Vol.30, pp. 703~722. https://doi.org/10.1002/nag.497
  15. O'Neil, K. (1983), The physics of mathematical frost heave models: a review, Cold Regions Science and Technology, Vol. 6, No. 3, pp. 275~291. https://doi.org/10.1016/0165-232X(83)90048-4
  16. Park, D. -S., Shin, M. -B. and Seo, Y. -K (2021). Development of Numerical Analysis Model for the Calculation of Thermal Conductivity of Thermo-syphon, Journal of the Korean Geotechnical Society, Vol. 37, No. 1, pp. 5~15 (In Korean). https://doi.org/10.7843/KGS.2021.37.1.5
  17. Sheng, D., Zhang, S., Yu, Z. and Zhang, J. (2013), Assessing frost susceptibility of soils using PCHeave, Cold Regions Science and Technology, Vol. 95, pp. 27~38. https://doi.org/10.1016/j.coldregions.2013.08.003
  18. Thomas, H. R., Cleall, P., Li, Y.-C., Harris, C. and Kern-luetschg, M. (2009), Modelling of cryogenic processes in permafrost and seasonally frozen soils, Geotechnique, Vol. 59, No. 3, pp. 173~184. https://doi.org/10.1680/geot.2009.59.3.173
  19. Tice, A. R., Black, P. B. and Berg, R. L. (1989), Unfrozen water contents of undisturbed and remolded alaskan silt, Cold Regions Science and Technology, Vol. 17, No. 2, pp. 103~111. https://doi.org/10.1016/S0165-232X(89)80001-1
  20. Williams, P. J. and Smith, M. W. (1989), The frozen earth: fundamentals of geocryology, Cambridge University Press, Cambridge, pp. 1~306.
  21. Zhang, Y. (2014), Thermal-hydro-mechanical model for freezing and thawing of soils, the University of Michigan, Michigan, pp. 1~217.
  22. Zhou, J. and Li, D. (2012), Numerical analysis of coupled water, heat and stress in saturated freezing soil, Cold Regions Science and Technology, Vol. 72, pp. 43~49. https://doi.org/10.1016/j.coldregions.2011.11.006
  23. Zhou, J., Pei, W., Zhang, X., Liu, W. and Wei, C. (2022), An easy method for assessing frost susceptibility of soils: the freezing ring test, Acta Geotechnica, Vol. 17, pp. 5691-5707 https://doi.org/10.1007/s11440-022-01659-6
  24. Zhu, M. (2006), Modeling and simulation of frost heave in frost-susceptible soils, the University of Michigan, Michigan, pp. 1~232.