• Title/Summary/Keyword: Frontside-attack

Search Result 43, Processing Time 0.022 seconds

Kinetics and Mechanism of the Anilinolysis of Dipropyl Chlorothiophosphate in Acetonitrile

  • Hoque, Md. Ehtesham Ul;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4403-4407
    • /
    • 2011
  • The nucleophilic substitution reactions of dipropyl chlorothiophosphate (3) with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are investigated kinetically in acetonitrile at $55.0^{\circ}C$. The obtained deuterium kinetic isotope effects (DKIEs; $k_H/k_D$) are primary normal ($k_H/k_D$ = 1.11-1.35). A concerted mechanism involving predominant frontside nucleophilic attack is proposed on the basis of the primary normal DKIEs and selectivity parameters. Hydrogen bonded, four-center-type transition state is proposed. The steric effects of the two ligands on the anilinolysis rates of various substrates are discussed.

Kinetics and Mechanism of Pyridinolyses of Ethyl Methyl and Ethyl Propyl Chlorothiophosphates in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3372-3376
    • /
    • 2013
  • The kinetic studies on the reactions of ethyl methyl (2) and ethyl propyl (4) chlorothiophosphates with X-pyridines have been carried out in acetonitrile at $35.0^{\circ}C$. The free energy correlations with X show biphasic concave upwards with a break point at X = H (2) and 3-Ph (4), respectively. A stepwise mechanism with a rate-limiting leaving group expulsion from the intermediate is proposed based on the magnitudes of selectivity parameters for both substrates. The considerably large values of ${\beta}_X$ = 1.50(2) and 1.44(4) with strongly basic pyridines and relatively small values of ${\beta}_X$ = 0.43(2) and 0.36(4) with weakly basic pyridines are interpreted as a change of the attacking direction of the X-pyridines from a frontside to a backside attack toward the chloride leaving group.

Kinetics and Mechanism of the Anilinolyses of O-Methyl, O-Propyl and O-Isopropyl Phenyl Phosphonochloridothioates in Acetonitrile

  • Barai, Hasi Rani;Hoque, Md. Ehtesham Ul;Lee, Mijin;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1096-1100
    • /
    • 2013
  • The kinetic studies on the reactions of O-methyl (1), O-propyl (3) and O-isopropyl (4) phenyl phosphonochloridothioates with substituted anilines and deuterated anilines have been carried out in acetonitrile at $55.0^{\circ}C$. A concerted $S_N2$ mechanism is proposed for the anilinolyses of 1, 3 and 4. The anilinolysis rates of the phosphonochloridothioates are predominantly dependent upon the steric effects over the inductive effects of the two ligands. The deuterium kinetic isotope effects (DKIEs; $k_H/k_D$) are primary normal with 1 and 3, while secondary inverse with 4. Primary normal and secondary inverse DKIEs are rationalized by frontside and backside nucleophilic attack transition state, respectively. The DKIEs of the phosphonochloridothioates do not have any consistent correlations with the two ligands.

Nucleophilic Substitution Reactions of O-Methyl N,N-Diisopropylamino Phosphonochloridothioate with Anilines and Pyridines

  • Barai, Hasi Rani;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1016-1022
    • /
    • 2014
  • The kinetic studies on the reactions of O-methyl N,N-diisopropylamino phosphonochloridothioate with X-anilines and X-pyridines have been carried out in acetonitrile. The free energy relationship with X in the anilines exhibits biphasic concave upwards with a break region between X = (H and 4-F), giving unusual negative ${\beta}_X$ and positive ${\rho}_X$ values with weakly basic anilines. The unusual phenomenon is rationalized by isokinetic relationship. A stepwise mechanism with a rate-limiting leaving group departure from the intermediate is proposed based on the selectivity parameter and variation trend of the deuterium kinetic isotope effects with X. The free energy relationship with X in the pyridines exhibits biphasic concave upwards with a break point at X = 3-MeO. A concerted mechanism is proposed based on relatively small ${\beta}_X$ value, and frontside and backside nucleophilic attack are proposed with strongly and weakly basic pyridines, respectively.

Kinetics and Mechanism of the Pyridinolysis of Aryl Ethyl Chlorothiophosphates in Acetonitrile

  • Adhikary, Keshab Kumar;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.3947-3951
    • /
    • 2011
  • The nucleophilic substitution reactions of Y-aryl ethyl chlorothiophosphates with X-pyridines are studied kinetically in acetonitrile at $55.0^{\circ}C$. The Hammett and Bronsted plots for substituent X variations in the nucleophiles exhibit biphasic concave upwards with a break point at X = 3-Me. The substituents of X = 4-CN and 4-Ac show great positive deviations from both the Hammett and Bronsted plots. The Hammett plots for substituent Y variations in the substrates exhibit biphasic concave upwards with a minimum point at Y = H. The obtained values of the cross-interaction constants (${\rho}_{XY}$) are all in spite of the biphasic free energy correlations for both substituent X and Y variations, since the ${\rho}_X$values with both the strongly and weakly basic pyridines are almost constant. A stepwise mechanism with a rate-limiting leaving group departure from the intermediate is proposed where the distance between X and Y does not vary from the intermediate to the second transition state. A frontside attack is proposed with the strongly basic pyridines based on the considerably great magnitudes of ${\rho}_X$ and ${\beta}_X$ values and a backside attack is proposed with the weakly basic pyridines based on the relatively small magnitudes of ${\rho}_X$ and ${\beta}_X$. The positive deviations of the two strong ${\pi}$-acceptor parasubstituents, X = 4-Ac and 4-CN, from both the Hammett and Bronsted plots are rationalized by the great extents of bond formation and breaking.

Kinetics and Mechanism of the Anilinolysis of Ethylene Phosphorochloridate in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4185-4190
    • /
    • 2011
  • The nucleophilic substitution reactions of ethylene phosphorochloridate (1c) with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are investigated kinetically in acetonitrile at $5.0^{\circ}C$. The anilinolysis rate of 1c involving a cyclic five-membered ring is four thousand times faster than its acyclic counterpart (1a: diethyl chlorophosphate) because of great positive value of the entropy of activation of 1c (${\Delta}S^{\neq}=+30\;cal\;mol^{-1}K^{-1}$ compared to negative value of 1a (${\Delta}S^{\neq}=-45\;cal\;mol^{-1}K^{-1}$) over considerably unfavorable enthalpy of activation of 1c (${\Delta}H^{\neq}=27.7\;kcal\;mol^{-1}$) compared to 1a (${\Delta}H^{\neq}=8.3\;kcal\;mol^{-1}$). Great enthalpy and positive entropy of activation are ascribed to sterically congested transition state (TS) and solvent structure breaking in the TS. The free energy correlations exhibit biphasic concave upwards for substituent X variations in the X-anilines with a break point at X = 3-Me. The deuterium kinetic isotope effects are secondary inverse ($k_H/k_D$ < 1) with the strongly basic anilines and primary normal ($k_H/k_D$ > 1) with the weakly basic anilines and rationalized by the TS variation from a dominant backside attack to a dominant frontside attack, respectively. A concerted $S_N2$ mechanism is proposed and the primary normal deuterium kinetic isotope effects are substantiated by a hydrogen bonded, four-center-type TS.

Significant Substituent Effects on Pyridinolysis of Aryl Ethyl Chlorophosphates in Acetonitrile

  • Adhikary, Keshab Kumar;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1460-1464
    • /
    • 2014
  • The substituent effects on the pyridinolysis (XC5H4N) of Y-aryl ethyl chlorophosphates are investigated in acetonitrile at $35.0^{\circ}C$. The two strong ${\pi}$-acceptor substituents, X = 4-Ac and 4-CN in the X-pyridines, exhibit large positive deviations from the Hammett plots but little positive deviations from the Br$\ddot{o}$nsted plots. The substituent Y effects on the rates are really significant and the Hammett plots for substituent Y variations in the substrates invariably change from biphasic concave downwards via isokinetic at X = H to biphasic concave upwards with a break point at Y = 3-Me as the pyridine becomes less basic. These are interpreted to indicate a mechanistic change at the break point from a stepwise mechanism with a rate-limiting bond formation (${\rho}_{XY}$ = -6.26) for Y = (4-MeO, 4-Me, 3-Me) to with a rate-limiting leaving group expulsion from the intermediate (${\rho}_{XY}$ = +5.47) for Y = (4-Me, H, 3-MeO). The exceptionally large magnitudes of ${\rho}_{XY}$ values imply frontside nucleophilic attack transition state.

Kinetics and Mechanism of the Pyridinolysis of Aryl Phenyl Chlorothiophosphates in Acetonitrile

  • Hoque, Md. Ehtesham Ul;Dey, Shuchismita;Kim, Chan-Kyung;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1138-1142
    • /
    • 2011
  • Kinetic studies for the reactions of Y-aryl phenyl chlorothiophosphates with X-pyridines have been carried out in acetonitrile at $35.0^{\circ}C$. The Hammett and Bronsted plots for substituent X variations in the nucleophiles are biphasic concave upwards with a break point at X = 3-Ph, while the Hammett plots for substituent Y variations in the substrates are biphasic concave downwards (and partially upwards) with a break point at Y = H. The signs and magnitudes of the cross-interaction constant (${\rho}_{XY}$) are strongly dependent upon the nature of substituents, X and Y. The proposed mechanism is a stepwise process with a rate-limiting step change from bond breaking with the weaker electrophiles to bond formation with the stronger eletrophiles. The nonlinear free energy correlations of biphasic concave upward plots for substituent X variations in the nucleophiles are rationalized by a change in the attacking direction of the nucleophile from a backside with less basic pyridines to a frontside attack with more basic pyridines.

Dual Substituent Effects on Anilinolysis of Bis(aryl) Chlorothiophosphates

  • Barai, Hasi Rani;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3597-3601
    • /
    • 2013
  • The reactions of bis(Y-aryl) chlorothiophosphates (1) with substituted anilines and deuterated anilines are investigated kinetically in acetonitrile at $55.0^{\circ}C$. The Hammett plots for substituent Y variations in the substrates show biphasic concave upwards with a break point at Y = H. The cross-interaction constants (${\rho}_{XY}$) are positive for both electron-donating and electron-withdrawing Y substituents. The kinetic results of 1 are compared with those of Y-aryl phenyl chlorothiophosphates (2). The cross-interaction between Y and Y, due to additional substituent Y, is significant enough to result in the change of the sign of ${\rho}_{XY}$ from negative with 2 to positive with 1. The effect of the cross-interaction between Y and Y on the rate changes from negative role with electron-donating Y substituents to positive role with electron-withdrawing Y substituents, resulting in biphasic concave upward free energy correlation with Y. A stepwise mechanism with a rate-limiting leaving group departure from the intermediate involving a predominant frontside attack hydrogen bonded, four-center-type transition state is proposed based on the positive sign of ${\rho}_{XY}$ and primary normal deuterium kinetic isotope effects.

Kinetics and Mechanism of the Benzylaminolysis of O,O-Dimethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide

  • Adhikary, Keshab Kumar;Barai, Hasi Rani;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4304-4308
    • /
    • 2011
  • Kinetic studies of the reactions of O,O-dimethyl Z-S-aryl phosphorothioates with X-benzylamines have been carried out in dimethyl sulfoxide at $85.0^{\circ}C$. The Hammett (log $k_2$ vs ${\sigma}_X$) and Br$\ddot{o}$nsted [log $k_2$ vs $pK_a$(X)] plots for substituent X variations in the nucleophiles are discrete with a break region between 4-Me and H, while the Hammett plots (log $k_2$ vs ${\sigma}_Z$) for substituent Z variations in the leaving groups are linear. The sign of the cross-interaction constant (${\rho}_{XZ}$) is positive for both the strongly and weakly basic nucleophiles. Greater magnitude of ${\rho}_{XZ}$ (= 2.54) value is observed with the weakly basic nucleophiles compared to with the strongly basic nucleophiles (${\rho}_{XZ}$ = 0.17). The deuterium kinetic isotope effects ($k_H/k_D$) involving deuterated benzylamines [$XC_6H_4CH_2ND_2$] are primary normal ($k_H/k_D$ > 1). The proposed mechanism is a stepwise with a rate-limiting leaving group expulsion from the intermediate involving a frontside nucleophilic attack with a hydrogen bonded, four-center-type transition state for both the strongly and weakly basic nucleophiles.