Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.5.1460

Significant Substituent Effects on Pyridinolysis of Aryl Ethyl Chlorophosphates in Acetonitrile  

Adhikary, Keshab Kumar (Department of Chemistry, Inha University)
Lee, Hai Whang (Department of Chemistry, Inha University)
Publication Information
Abstract
The substituent effects on the pyridinolysis (XC5H4N) of Y-aryl ethyl chlorophosphates are investigated in acetonitrile at $35.0^{\circ}C$. The two strong ${\pi}$-acceptor substituents, X = 4-Ac and 4-CN in the X-pyridines, exhibit large positive deviations from the Hammett plots but little positive deviations from the Br$\ddot{o}$nsted plots. The substituent Y effects on the rates are really significant and the Hammett plots for substituent Y variations in the substrates invariably change from biphasic concave downwards via isokinetic at X = H to biphasic concave upwards with a break point at Y = 3-Me as the pyridine becomes less basic. These are interpreted to indicate a mechanistic change at the break point from a stepwise mechanism with a rate-limiting bond formation (${\rho}_{XY}$ = -6.26) for Y = (4-MeO, 4-Me, 3-Me) to with a rate-limiting leaving group expulsion from the intermediate (${\rho}_{XY}$ = +5.47) for Y = (4-Me, H, 3-MeO). The exceptionally large magnitudes of ${\rho}_{XY}$ values imply frontside nucleophilic attack transition state.
Keywords
Substituent effects; Cross-interaction constant; Phosphoryl transfer reaction; Pyridinolysis; Aryl ethyl chlorophosphates;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Barai, H. R.; Lee, H. W. Beilstein J. Org. Chem. 2013, 9, 615   DOI   ScienceOn
2 Chang, S.; Koh, H. J.; Lee, B.-S.; Lee, I. J. Org. Chem. 1995, 60, 7760.   DOI
3 (a) Lee, I. Chem. Soc. Rev. 1990, 19, 317.   DOI
4 (b) Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57.
5 (c) Lee, I.; Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529.   DOI   ScienceOn
6 (d) Lee, I.; Lee, H. W. Bull. Korean Chem. Soc. 2001, 22, 732.
7 Shpanko, I. V. Mendeleev Commun. 1991, 119.
8 Koh, H. J.; Lee, H. W.; Lee, I. J. Chem., Soc., Perkin Trans. 2 1994, 125.
9 (a) Koh, H. J.; Han, K. L.; Lee, H. W.; Lee, I. J. Org. Chem. 1998, 63, 9834.   DOI   ScienceOn
10 (b) Dixon, D. A.; Charlier, P. A.; Gassman, P. G. J. Am. Chem. Soc. 1980, 102, 3957.   DOI
11 (c) Paddon-Row, M. N.; Santiago, C.; Houk, K. N. J. Am. Chem. Soc. 1980, 102, 6561.   DOI
12 (d) Olah, G. A.; Arvanaghi, M.; Surya Prakash, G. K. J. Am. Chem. Soc. 1982, 104, 1628.   DOI
13 (e) Krishnamurthy, V. V.; Surya Prakash, G. K.; Iyer, P. S.; Olah, G. A. J. Am. Chem. Soc. 1986, 108, 1575.   DOI
14 (a) Bond, P. M.; Castro, E. A.; Moodie, R. B. J. Chem., Soc., Perkin Trans. 2 1976, 68.
15 (b) Palling, D.; Jencks, W. P. J. Am. Chem. Soc. 1984, 106, 4869.   DOI
16 Hong, S. W.; Koh, H. J.; Lee, I. J. Phys. Org. Chem. 1999, 12, 425.   DOI
17 Hong, S. W.; Koh, H. J.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 1999, 20, 1172.
18 Koh, H. J.; Han, K. L.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 4706.   DOI   ScienceOn
19 Guha, A. K.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 12.   DOI   ScienceOn
20 (c) McDowell, R. S.; Streitwieser, A. J. Am. Chem. Soc. 1985, 107, 5849.   DOI
21 Thatcher, G. R. J.: Kluger, R. Adv. Phys. Org. Chem. 1989, 25, 99.
22 Hoque, M. E. U.; Dey, N. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Org. Biomol. Chem. 2007, 5, 3944.   DOI   ScienceOn
23 (a) Ramirez, F. Acc. Chem. Res. 1968, 1, 168.   DOI
24 (b) Perozzi, E. F.; Martin, J. C.; Paul, I. C. J. Am. Chem. Soc. 1975, 96, 6735.
25 (d) Lee, H. W.; Guha, A. K.; Kim, C. K.; Lee, I. J. Org. Chem. 2002, 67, 2215.   DOI   ScienceOn
26 Lee, I.; Lee, W. H.; Lee, H. W.; Bentley, T. W. J. Chem., Soc., Perkin Trans. 2 1993, 141.