• 제목/요약/키워드: Front-rear wheel steering

검색결과 40건 처리시간 0.03초

4륜 조향을 이용한 Steer-by-Wire 시스템의 고장 허용 제어 전략 (Fault Tolerant Control Strategy for Four Wheel Steer-by-Wire Systems)

  • 노성훈;권백순
    • 자동차안전학회지
    • /
    • 제15권2호
    • /
    • pp.13-20
    • /
    • 2023
  • This paper presents a fault tolerant control strategy for Steer-by-Wire (SbW) systems. Among many problems to be solved before commercialization of SbW systems, maintaining reliability and fault tolerance in such systems are the most pressing issues. In most previous studies, dual steering motors are used to achieve actuation redundancy. However, relatively few studies have been conducted to introduce fault tolerant control strategies using rear wheel steering system. In this work, an actuator fault in front wheel steering is compensated by active rear wheel steering. The proposed fault tolerant control algorithm consists of disturbance observer and sliding mode control. The fault tolerant control performance of the proposed approach is validated via computer simulation studies with Carsim vehicle dynamics software and MATLAB/Simulink.

Bicycle 모델을 이용한 4륜 조향 차량의 동력학 해석 (Linearized Dynamic Analysis of a Four-Wheel Steering Vehicle)

  • 이영화;김석일;서명원;손희성;김성하
    • 한국자동차공학회논문집
    • /
    • 제2권5호
    • /
    • pp.101-109
    • /
    • 1994
  • Recently, four-wheel steering systems have been developed and studied as one of the latest automotive technologies for improving the handling characteristics of a vehicle. In much of the proposed four-wheel steering systems, the side slip angle at the vehicle's center of gravity is maintained at zero. This approach allows the greater maneuverability at low speed by means of counter-phase rear steering and the improved stability at high speed through same-phase rear steering. In this paper, the effects of several four-wheel steering systems are studied and discussed on the responsiveness and stability of the vehicle by using the linear analysis. Especially, the effects of the cornering stiffnesses of both front and rear wheels are investigated on the yaw velocity gain and critical speed of the vehicle.

  • PDF

A Review of Rear Axle Steering System Technology for Commercial Vehicles

  • 하룬 아흐마드 칸;윤소남;정은아;박정우;유충목;한성민
    • 드라이브 ㆍ 컨트롤
    • /
    • 제17권4호
    • /
    • pp.152-159
    • /
    • 2020
  • This study reviews the rear or tag axle steering system's concepts and technology applied to commercial vehicles. Most commercial vehicles are large in size with more than two axles. Maneuvering them around tight corners, narrow roads, and spaces is a difficult job if only the front axle is steerable. Furthermore, wear and tear in tires will increase as turn angle and number of axles are increased. This problem can be solved using rear axle steering technology that is being used in commercial vehicles nowadays. Rear axle steering system technology uses a cylinder mounted on one of rear axles called a steering cylinder. Cylinder control is the primary objective of the real axle steering system. There are two types of such steering mechanisms. One uses master and slave cylinder concept while the other concept is relatively new. It goes by the name of smart axle, self-steered axle, or smart steering axle driven independently from the front wheel steering. All these different types of steering mechanisms are discussed in this study with detailed description, advantages, disadvantages, and safety considerations.

바이모달 트램 선회성능에 관한 연구 (A Study on the Turning Performance for the Bimodal Tram)

  • 문경호;이강원;목재균;장세기
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.301-306
    • /
    • 2011
  • The rear of the vehicle generally overhangs the rear axle. As a result, the rear of a vehicle swings to the outside of the rear axle(rear swing-out). In front steering vehicles, rear swing-out is not important because rear swing-out values measured outside the rear edge are relatively small. However, in the case of the bimodal tram with AWS(all wheel steering), the rear swing-out values increase because of the rear steering at a reverse phase angle. Off-tracking is defined as the radial offset between the path of the centerline of the front axle and the path of the centerline of the following axle. In this paper, in addition to determine the turning performance of bimodal tram with AWS, turning radius, swing-out, off-tracking and swept path width were also investigated.

  • PDF

Fuzzy Logic 제어를 이용한 AFS와 ARS의 통합제어에 관한 연구 (A Study on Integrated Control of AFS and ARS Using Fuzzy Logic Control Method)

  • 송정훈
    • 한국자동차공학회논문집
    • /
    • 제22권1호
    • /
    • pp.65-70
    • /
    • 2014
  • An Integrated Dynamics Control system with four wheel Steering (IDCS) is proposed and analysed in this study. It integrates and controls steer angle of front and rear wheel simultaneously to enhance lateral stability and steerability. An active front steer (AFS) system and an active rear steer (ARS) system are also developed to compare their performances. The systems are evaluated during brake maneuver and several road conditions are used to test the performances. The results showed that IDCS vehicle follows the reference yaw rate and reduces side slip angle very well. AFS and ARS vehicles track the reference yaw rate but they can not reduce side slip angle. On split-${\mu}$ road, IDCS controller forces the vehicle to go straight ahead but AFS and ARS vehicles show lateral deviation from centerline.

운전자-자동차모델을 이용한 4륜조향자동차의 주행특성 해석 (Dynamic Characteristics Analysis of a Four-Wheel Steering Vehicle Using a Driver-Vehicle Model)

  • 이영화;김석일;서명원;김대영;김동룡
    • 한국자동차공학회논문집
    • /
    • 제3권3호
    • /
    • pp.119-128
    • /
    • 1995
  • A driver-vehicle model means the integrated dynamic model that is able to estimate the steering wheel angle from the driver's desired path based on the dynamic characteristics of the driver and vehicle. In this paper, the dynamic characteristics of several four-wheel steering systems with the simultaneously steerable front and rear wheels are investigated and compared by means of the driver-vehicle model. Especially, the presented analysis results are obtained by using the ISO test codes such as lane change, double lane change and slalom, and the effects of the driver's steering response time and vehicle speed are examined on the responsiveness and stability of vehicle.

  • PDF

전륜 인휠모터 후륜구동 차량의 선회 특성 변형을 위한 요모멘트 제어 (Yaw Moment Control for Modification of Steering Characteristic in Rear-driven Vehicle with Front In-wheel Motors)

  • 차현수;좌은혁;박관우;이경수;박재용
    • 자동차안전학회지
    • /
    • 제13권1호
    • /
    • pp.6-13
    • /
    • 2021
  • This paper presents yaw moment control for modification of steering characteristic in rear-driven vehicle with front in-wheel motors (IWMs). The proposed control algorithm is designed to modify yaw rate response of the test vehicle. General approach for modification of steering characteristic is to define the desired yaw rate and track the yaw rate. This yaw rate tracking method can cause the chattering problem because of the IWM actuator response. Large overshoot and settling time in IWM torque response can amplify the oscillation in control input and yaw rate. To resolve these problems, open-loop IWM controller for cornering agility was designed to modify the understeer gradient of the vehicle. The proposed algorithm has been investigated via the computer simulations and the vehicle tests. The performance evaluation has been conducted on dry asphalt using E-segment test vehicle. The performance of the proposed algorithm has been compared to general yaw rate tracking algorithm in the vehicle tests. It has been shown that the proposed control law improved the cornering agility without chattering problem.

AFS 시스템의 새로운 수학적 모델 및 제어기 개발 (Development of New Numerical Model and Controller of AFS System)

  • 송정훈
    • 한국자동차공학회논문집
    • /
    • 제22권6호
    • /
    • pp.59-67
    • /
    • 2014
  • A numerical model and a controller of Active Front wheel Steer (AFS) system are designed in this study. The AFS model consists of four sub models, and the AFS controller uses sliding mode control and PID control methods. To test this model and controller an Integrated Dynamics Control with Steering (IDCS) system is also designed. The IDCS system integrates an AFS system and an ARS (Active Rear wheel Steering) system. The AFS controller and IDCS controller are compared under several driving and road conditions. An 8 degree of freedom vehicle model is also employed to test the controllers. The results show that the model of AFS system shows good kinematic steering assistance function. Steering ratio varies depends on vehicle velocity between 12 and 24. Kinematic stabilization function also shows good performance because yaw rate of AFS vehicle tracks the reference yaw rate. IDCS shows improved responses compared to AFS because body side slip angle is also reduced. This result also proves that AFS system shows satisfactory result when it is integrated with another chassis system. On a split-m road, two controllers forced the vehicle to proceed straight ahead.

컨테이너 운송용 AGV의 운동궤적에 관한 연구 (A Study on the Driving Trajectory of AGV for Container Transport)

  • 박정보;김민주;이승수;김중완;전언찬
    • 한국공작기계학회논문집
    • /
    • 제13권5호
    • /
    • pp.96-102
    • /
    • 2004
  • In this study, we have developed the simulation tool in order to investigate driving trajectory of AGV for container transport. AGV for container transport is different from the indoor AGV in that it is a large size structure at being loaded the weight of 40 ton. and AGV for container transport is applied to front wheel steering, rear wheel steering, all wheel steering, and crap steering. Therefore, we have developed the simulation tool considering dynamic problems and a center of turning in accordance with fourth ways of steering mode. As the result of this study, we have confirmed that this tool is useful and cost-effective in the dynamic analysis or large size vehicles. Also, it is useful to calculate the minimum radius of turning for large size vehicles.

컨테이너 운송용 AGV의 운동궤적에 관한 연구 (A Study on Driving Trajectory of AGV for Container Transport)

  • 이지용;김민주;이승수;김중완;전언찬
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1076-1081
    • /
    • 2004
  • In this study, we have developed the simulation tool in order to investigate driving trajectory of AGV for container transport. AGV for container transport is different from the indoor AGV in that it is a large size structure at being loaded the weight of 40 ton. And AGV for container transport is applied to front wheel steering, rear wheel steering, all wheel steering, and crap steering. Therefore, we have developed the simulation tool considering dynamic problems and center of turning in accordance with four way of steering modes. Throughout some computer simulations, we have confirmed that this tool is useful to analysis dynamic problems and to calculate minimum radius of turning for large size vehicles.

  • PDF