• 제목/요약/키워드: Frictional heat

검색결과 207건 처리시간 0.027초

경사기능재료에서의 열탄성 불안정성 (Thermoelastic Instability in Functionally Graded Materials)

  • 장용훈;안성호;이승욱
    • 한국자동차공학회논문집
    • /
    • 제14권5호
    • /
    • pp.130-137
    • /
    • 2006
  • A transient finite element simulation is developed for the two-dimensional thermoelastic contact problem of a stationary functionally graded material between sliding layers, with frictional heat generation. Thermoelastic instability in functionally graded materials is investigated. The critical speed of functionally graded material coating disk is larger than that of the conventional steel disk. The effect of the nonhomogeneity parameter in functionally graded material is also investigated. The results show that functionally gradient materials restrain the growth of perturbation and delay the contact separation.

Oxide CMP에서 Sliding Distance와 온도가 재료제거와 연마 불균일도에 주는 영향 (Effect of Sliding Distance and Temperature on Material Non-uniformity in Oxide CMP)

  • 김영진;박범영;조한철;정해도
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.555-556
    • /
    • 2007
  • Through the single head kinematics, sliding distance is a movement of a pad within wafer. The sliding distance is very important to frictional heat, material removal, and so on. A Temperature distribution is similar to sliding distance. But is not same. Because of complex process factor in CMP. A platen velocity is a dominant factor in a temperature and material removal. WIWNU is low in head faster condition.

  • PDF

디스코 브레이크에서 열섬 현상이 발생되는 원인과 저더진동에 미치는 영향 (The Origin and Effect of Hot Spot Phenomena on Judder Vibration in Automotive Disk Brake)

  • 조종두;김명구;조호준
    • 한국소음진동공학회논문집
    • /
    • 제16권8호
    • /
    • pp.886-892
    • /
    • 2006
  • Hot spot phenomenon is caused by non-uniform contact area between brake pad and disk frequent braking. Brake disk deformed by locally concentrated heat increases magnitude of frictional vibration. And this deformation can highly influence the judder vibration. In this experimental study, vibration and hot spot was measured in accordance with rotation of disk and pressure of master cylinder for finding the factors that causes hot spot phenomena. For comparing hot spot aspects with mode shapes of disk, mode shapes were measured by conducting modal test, and analyzed by using finite element analysis. Relation between hot spot phenomenon, and mode shape, pressure of master cylinder and rotation speed of disk respectively, was achieved by hot spot measurement and frequency analysis.

마찰 하중에 의한 HMX, RDX, AP기반 고에너지물질의 발화특성모델링 연구 (Friction-induced ignition and initiation modeling of HMX, RDX and AP based energetic materials)

  • 곽민철;유지창;여재익
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제31회 추계학술대회논문집
    • /
    • pp.283-287
    • /
    • 2008
  • 충격과 관통 같은 에너지의 소실은 열을 발생시키며 이를 통하여 기계적 변화와 더불어 열적 변화를 유발하게 된다. 고에너지 물질의 경우 이런 마찰에 의해 발생되는 열이 점화 원인이 될 수 있다. 그래서 본 연구에는 BAM 마찰 실험을 통하여 획득된 HMX, RDX 그리고 AP를 기반으로 한 추진제의 마찰 점화 실험 자료를 바탕으로 하여 마찰에 의한 고에너지 물질의 점화를 모델링한다.

  • PDF

제동디스크 소재의 마찰-마모특성 시험 (A test for friction and wear characteristic of brake disk materials)

  • 임충환;구병춘
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.1761-1765
    • /
    • 2008
  • In the braking of a railroad car, mechanical brake systems using wheel tread and brake disk are applied as well as electrical brake systems by regenerator and rheostat. It is very important to consider the frictional characteristic because kinetic energy of the vehicle is dissipated as converted thermal energy through friction between disk and brake pad during disk braking. A friction coefficient and wear characteristic are decided from the interrelationship of disk and friction material in the disk brake system. Lab-scale dynamometer test on developed brake disk materials for increasing heat resistance was performed in this study. Each candidate material was tested at various braking speeds and pressures and we obtained the friction coefficient and wear characteristic. And we executed comparative evaluation of the result from the test.

  • PDF

금속 박판 Al/Al 및 Al/Cu의 초음파 용착 접합성 평가 (Ultrasonic Deposit Junction Characteristic Evaluation of Metal Sheets Al/Al and Al/Cu)

  • 서정석;백시영
    • 대한금속재료학회지
    • /
    • 제49권8호
    • /
    • pp.642-648
    • /
    • 2011
  • This paper describes an experimental study on ultrasonic welding of similar and dissimilar metals. There are optimum welding conditions which are found for welding of Al/Al and Al/Cu. It evaluated weldability using tensile test, SEM observation and EDX-ray analysis. Both ultrasonic welding of Al/Al and Al/Cu have amplitude as the variable factor. Al/Cu welding was examined again with welding time as variable factor to find the best conditions. The more welding time or amplitude increase, the better weldability. The optimum conditions for ultrasonic welding of Al/Al were formed at pressure 0.25 MPa, welding time 0.25 sec, amplitude 90%. Pressure 0.25 MPa, welding time 0.4 sec, amplitude 80% are optimized for Al/Cu ultrasonic metal welding and solid-state diffusion generated by ultrasonic vibration and frictional heat is confirmed at the welded interface.

Grain Refinement and Phase Transformation of Friction Welded Carbon Steel and Copper Joints

  • Lee, W.B.;Lee, C.Y.;Yeon, Y.M.;Kim, K.K.;Jung, S.B
    • International Journal of Korean Welding Society
    • /
    • 제3권2호
    • /
    • pp.46-52
    • /
    • 2003
  • The refinement of microstructure and phase transformation near the interface of pure copper/carbon steel dissimilar metals joints with various friction welding parameters have been studied in this paper. The microstructure of copper and carbon steel joints were changed to be a finer grain compared to those of the base metals due to the frictional heat and plastic deformation. The microstructure of copper side experienced wide range of deformed region from the weld interface and divided into very fine equaxied grains and elongated grains. Especially, the microstructures near the interface on carbon steel were transformed from ferrite and pearlite dual structure to fine ferrite, grain boundary pearlite and martensite due to the welding thermal cycle and rapid cooling rate after welding. These microstructures were varied with each friction welding parameters. The recrystallization on copper side is reason for softening in copper side and martensite transformation could explain the remarkable hardening region in carbon steel side.

  • PDF

수소저장합금을 이용한 열수송시스템 제어기술 연구 (Study on the control technique for the heat transportation system using metal hydride)

  • 심규성;김종원;김정덕;명광식
    • 한국수소및신에너지학회논문집
    • /
    • 제11권1호
    • /
    • pp.43-49
    • /
    • 2000
  • 현재 증기나 온수에 의한 열수송은 배관을 통하여 열손실 및 마찰손실 등이 발생하므로 수송거리는 3 내지 5km가 한계이다. 그러나 대부분의 공단이 도시지역에서 10km 이상 떨어져 있으므로 이들 지역에서 발생되는 폐열을 적절히 활용하기 위해서는 새로운 열수송 시스템이 개발되어야 한다. 수소저장합금은 수소를 흡수 또는 방출하면서 발열반응과 흡열반응을 일으키는 특성을 가지고 있으므로 산업공단지역의 폐열로부터 수소저장합금의 수소를 방출시키고, 이 수소를 인근 도시지역에 파이프라인으로 수송한 후 필요시 또 다른 수소저장합금과 반응시켜 열을 얻을 수 있다. 이 시스템에서는 난방의 목적 외에도 수소의 흡수 방출온도가 낮은 합금을 이용하여 냉열을 얻을 수도 있다. 따라서 수소저장합금은 폐열의 저장이나 열수송의 수단으로 활용할 수 있다. $MmNi_{4.5}Al_{0.5}Zr_{0.003}$, $LaNi_5$, $Zr_{0.9}Ti_{0.1}Cr_{0.6}Fe_{1.4}$, $MmNi_{4.7}Al_{0.1}Fe_{0.1}V_{0.1}$ 합금들이 열수송에 적합한 합금으로 선정되어 그 특성을 검토하였으며, 열수송시스템의 설계 및 제어기술에 대하여 검토하였다.

  • PDF

냉각수 유량에 따른 양면 랩그라인딩 정반의 전열특성 (Characteristics of Heat Transfer in DLG Platen According to Flow Rate of Coolant)

  • 김동균;김종윤;이현섭
    • Tribology and Lubricants
    • /
    • 제32권2호
    • /
    • pp.50-55
    • /
    • 2016
  • Recently, a double-side machining process has been adopted in fabricating a sapphire glass to enhance the manufacturability. Double-side lap grinding (DLG) is one of the emerging processes that can reduce process steps in the fabrication of sapphire glasses. The DLG process uses two-body abrasion with fixed abrasives including pallet. This process is designed to have a low pressure and high rotational speed in order to obtain the required material removal rate. Thus, the temperature is distributed on the DLG platen during the process. This distribution affects the shape of the substrate after the DLG process. The coolant that is supplied into the cooling channel carved in the base platen can help to control the temperature distribution of the DLG platen. This paper presents the results of computational fluid dynamics with regard to the heat transfer in a DLG platen, which can be used for fabricating a sapphire glass. The simulation conditions were 200 rpm of rotational speed, 50℃ of frictional temperature on the pallet, and 20℃ of coolant temperature. The five cases of the coolant flow rate (20~36 l/min) were simulated with a tetrahedral mesh and prism mesh. The simulation results show that the capacity of the generated cooling system can be used for newly developed DLG machines. Moreover, the simulation results may provide a process parameter influencing the uniformity of the sapphire glass in the DLG process.

철도차량용 금속계 소결마찰재의 조성에 따른 트라이볼로지 특성 (Effects of Composition of Metallic Friction Materials on Tribological Characteristics on Sintered Metallic Brake Pads and Low-Alloy Heat-Resistance Steel for Trains)

  • 양용준;이희성
    • Tribology and Lubricants
    • /
    • 제30권6호
    • /
    • pp.330-336
    • /
    • 2014
  • Sintered metallic brake pads and low alloy heat resistance steel disks are applied to mechanical brake systems in high energy moving machines that are associated with recently developed 200km/h trains. This has led to the speed-up of conventional urban rapid transit. In this study, we use a lab-scale dynamometer to investigate the effects of the composition of friction materials on the tribological characteristics of sintered metallic brake pads and low alloy heat resistance steel under dry sliding conditions. We conduct test under a continuous pressure of 5.5 MPa at various speeds. To determine the optimal composition of friction materials for 200 km/h train, we test and the evaluate frictional characteristics such as friction coefficients, friction stability, wear rate, and the temperature of friction material, which depend on the relative composition of the Cu-Sn and Fe components. The results clearly demonstrate that the average friction coefficient is lower for all speed conditions, when a large quantity of iron power is added. The specimen of 25 wt% iron powder that was added decreased the wear of the friction materials and the roughness of the disc surface. However when 35 wt% iron powder was added, the disc roughness and the wear rate of friction materials increased By increasing the amount of iron powder, the surface roughness, and temperature of the friction materials increased, so the average friction coefficients decreased. An oxidation layer of $Fe_2O_3$ was formed on both friction surfaces.