• 제목/요약/키워드: Friction wedge

검색결과 71건 처리시간 0.022초

원형 마찰 감쇠기 특성의 실험식 개발 (Development an Empirical Formula for the Friction Coefficient of a Circular Friction Damper)

  • 신용우;이상권
    • 한국소음진동공학회논문집
    • /
    • 제21권6호
    • /
    • pp.491-498
    • /
    • 2011
  • The structural vibration due to earthquake or outside impact causes serious problem for building safety. A dynamic model of a friction damper which can be constructed and installed easily is needed to reduce the vibration of the building. In this paper, the experimental equation of a circular friction damper is derived and designed for reduction of a earthquake vibration of a building. The developed experimental equation is defined to simply design the capacity on design of the circular friction damper based on the results of the performance test. Finally this experimental equation can be used for the design of a circular friction damper.

과부화 방지를 위한 쐐기형 레일클램프의 지지대 위치 설정 (Determining the Position of Supporter to prevent a Overload applied to the Wedge Type Rail Clamp)

  • 한동섭;한근조;이성욱
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.294-297
    • /
    • 2006
  • The rail clamp is the device to prevent the crane slips along a rail from the wind blast as well as to locate a container crane in the set position during an operating mode. In this study we conduct the research for determining the proper position of supporter to prevent the overload applied to the rail clamp with respect to the wedge angle in the wedge type rail clamp. The friction force between the jaw pad and the rail to prevent that the crane slips along a rail, when the wind blows, is generated fly the rail-directional wind load. Accordingly the proper position of the supporter to prevent the overload is determined fly analyzing the forces applied to the rail clamp in the wedge working stage. In order to analyze the effect of the wedge angle on the position of supporter, 5-kinds of wedge angles, such as 2, 4, 6, 8, $10^{\circ}$, were adapted as the design parameter, and the wind speed of 40m/s was adapted as the design wind speed criteria.

  • PDF

모노 텐던 앵커 헤드의 변형 추정을 위한 수치해석 (Numerical Analysis for the Deformation of a Mono Tendon Anchor Head)

  • 박장호;양현주;조정래
    • 한국안전학회지
    • /
    • 제29권1호
    • /
    • pp.25-30
    • /
    • 2014
  • This paper deals with a numerical study on the deformation of a mono tendon anchor head. The anchor head is used to introduce the compression to concrete, and consists of wedges and a head. All kinematics, material and contact nonlinearity are included in the precise analysis of a mono tendon anchor head. A numerical study on a mono tendon anchor head is performed to investigate effects of friction and eccentricity of load by ABAQUS. From the numerical results, it is verified that the deformation of a mono tendon anchor head is affected by characteristics of materials, boundary condition between wedge and anchor head, eccentricity of load, etc.

접이식 웨지 장착 강관네일의 현장 인발시험 및 3차원 유한요소해석 (Field Pull-out Test and 3-D FEM Analysis for Steel Pipe Nailing Installed Foldable Wedge)

  • 권교근;최봉혁
    • 대한토목학회논문집
    • /
    • 제29권6C호
    • /
    • pp.313-319
    • /
    • 2009
  • 본 연구에서는 접이식 웨지를 장착한 강관네일의 거동 특성 평가를 위해 현장인발시험 및 3차원 수치해석을 수행하였다. 접이식 웨지를 장착한 강관네일의 현장인발시험 결과 접이식 웨지가 없는 경우에 비해 약 30% 정도의 인발 저항 증진효과가 있는 것으로 평가되었다. 한편, 강관네일의 합리적인 인발거동 분석을 위해 3차원 수치해석에서는 접이식 웨지가 장착 되지 않은 강관네일의 역해석을 통하여 현장 인발거동과 일치하는 네일과 지반사이의 마찰 특성을 평가하고, 이를 접이식 웨지가 장착된 강관네일의 해석에 도입하여 그 거동을 분석하였다. 시행착오를 통한 역해석 결과 그라우트와 지반 사이의 마찰계수(${\mu}$)는 약 1.2 정도가 발휘되는 것으로 평가되었으며, 강관네일의 극한인발저항력은 $$T_L{\sim_=}32$$ tonf으로 접이식 웨지가 장착되지 않은 네일의 $$T_L{\sim_=}24$$ tonf 보다 약 33% 증가하는 것으로 평가되어 현장인발시험결과와 거의 일치하는 것으로 나타났다.

현장시험을 통한 DEW 지압형 앵커의 적용성평가 (Application of DEW Anchor with Field Test)

  • 최경집;박우영;유성진;이성락
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.745-751
    • /
    • 2009
  • The anchor is used extensively for a cutting slope, an earth retaining wall, an uplift resistance of sub-structures and so on at civil engineering projects and is classified by aim in use, tendon material, and ground/tension fixing type. It can be distinguished extensively into friction type, bearing type, and complex type by ground fixing type. Generally, bond length of friction type anchor has application to 3~10m depending on the friction-resistance characteristics. In this study, 'DEW(double enlargement wedge) bearing type anchor' of new concept is devised. The bond length is about 0.6~0.8m. It can be used on the ground to have the strength characteristics above it of weathered rock. There are merits which are 'period reduction' and 'cost saving' through the minimum of the boring length. In addition, it is so called environmentally friendly Methods because it can reduce the quantity of carbon dioxide through the reducing drilling machine operation time.

  • PDF

Behaviors of Anisotropic Fluids in the Vicinity of a Wedge

  • Kim, Youn-J.
    • Journal of Mechanical Science and Technology
    • /
    • 제14권6호
    • /
    • pp.690-698
    • /
    • 2000
  • The laminar boundary layer flow and heat transfer of anisotropic fluids in the vicinity of a wedge have been examined with constant surface temperature. The similarity variables found by Falkner and Skan are employed to reduce the stream wise-dependence in the coupled nonlinear boundary layer equations. The numerical solutions are presented using the fourth-order Runge - Kutta method and the distribution of velocity, micro-rotation, shear and couple stresses and temperature across the boundary layer are plotted. These results are also compared with the corresponding flow problems for Newtonian fluid over wedges. It is found that for a constant wedge angle, the skin friction coefficient is lower for micropolar fluid, as compared to Newtonian fluid. For the case of the constant material parameter K, however, the magnitude of velocity for anisotropic fluid is greater than that of Newtonian fluid. The numerical results also show that for a constant wedge angle with a given Prandtl number, Pr = I, the effect of increasing values of K results in increasing thermal boundary layer thickness for anisotropic fluid, as compared with Newtonian fluid. For the case of the constant material parameter K, however, the heat transfer rate for anisotropic fluid is lower than that of Newtonian fluid.

  • PDF

현장계측에 의한 접이식 웨지 장착 강관네일의 인발거동 평가 (Estimation of Pull-out Behavior for Steel Pile Nailing installed Foldable Wedge by Field Measurement)

  • 권교근;최봉혁;김경민
    • 한국지반신소재학회논문집
    • /
    • 제8권4호
    • /
    • pp.19-25
    • /
    • 2009
  • 본 연구에서는 접이식 웨지가 장착된 경량 강관네일의 인발저항 증진효과를 평가하기 위하여 동일 지반조건에서 시험시공을 통한 접이식 웨지가 장착된 네일과 웨지가 장착되지 않은 네일의 현장 인발거동 특성을 평가하였다. 강관네일의 현장 인발거동 특성 평가는 극한인발저항력 ($T_L$), 단위주면 마찰저항($q_s$, $u_{max}$), 인발강성계수($K_{\beta}$) 및 네일의 인장력 분석을 통하여 수행되었으며, 그 결과 접이식 웨지를 장착할 경우 풍화토 지반에서 약 30% 정도의 인발저항 증진효과가 있는 것으로 나타났다.

  • PDF

나노윤활유를 사용하는 평행 슬라이더 베어링의 윤활해석 (Lubrication Analysis of Parallel Slider Bearing with Nanolubricant)

  • 박태조;강정국
    • Tribology and Lubricants
    • /
    • 제39권3호
    • /
    • pp.87-93
    • /
    • 2023
  • Nanofluids are dispersions of particles smaller than 100 nm (nanoparticles) in base fluids. They exhibit high thermal conductivity and are mainly applied in cooling applications. Nanolubricants use nanoparticles in base oils as lubricant additives, and have recently started gathering increased attention owing to their potential to improve the tribological and thermal performances of various machinery. Nanolubricants reduce friction and wear, mainly by the action of nanoparticles; however, only a few studies have considered the rheological properties of lubricants. In this study, we adopt a parallel slider bearing model that does not generate geometrical wedge effects, and conduct thermohydrodynamic (THD) analyses to evaluate the effect of higher thermal conductivity and viscosity, which are the main rheological properties of nanolubricants, on the lubrication performances. We use a commercial computational fluid dynamics code, FLUENT, to numerically analyze the continuity, Navier-Stokes, energy equations with temperature-viscosity-density relations, and thermal conductivity and viscosity models of the nanolubricant. The results show the temperature and pressure distributions, load-carrying capacity (LCC), and friction force for three film-temperature boundary conditions (FTBCs). The effects of the higher thermal conductivity and viscosity of the nanolubricant on the LCC and friction force differ significantly, according to the FTBC. The thermal conductivity increases with temperature, improving the cooling performance, reducing LCC, and slightly increasing the friction. The increase in viscosity increases both the LCC and friction. The analysis method in this study can be applied to develop nanolubricants that can improve the tribological and cooling performances of various equipment; however, additional research is required on this topic.

상사해법을 이용한 쐐기형 물체 주위의 미세 극성유체 유동 특성에 관한 연구 (A Similarity Solution of the Characteristics of Micropolar Fluid Flow in the Vicinity of a Wedge)

  • 김윤제
    • 대한기계학회논문집B
    • /
    • 제23권8호
    • /
    • pp.969-977
    • /
    • 1999
  • A similarity solution of a steady laminar flow of micropolar fluids past wedges has been studied. The similarity variables found by Falkner and Skan are employed to reduce the streamwise-dependence in the coupled nonlinear boundary layer equations. Numerical solutions of the equations are then obtained using the fourth-order Runge-Kutta method and the distribution of velocity, micro-rotation, shear and couple stress across the boundary layer are obtained. These results are compared with the corresponding flow problems for Newtonian fluid past wedges with various wedge angles. Numerical results show that, keeping ${\beta}$ constant, the skin friction coefficient is lower for a micropolar fluid, as compared to a Newtonian fluid. For the case of constant material parameter K, however, the velocity distribution for a micropolar fluid is higher than that of a Newtonian fluid.

양 벽면에 V/⋀형 리브가 있는 수축 채널의 열전달과 전 마찰계수 (Heat Transfer and Total Friction Factors in the Convergent Channels with V/⋀-shaped Ribs on Two Opposite Walls)

  • 이명성;허민성;정의재;박영준;유정현;임건우;안수환
    • 동력기계공학회지
    • /
    • 제20권5호
    • /
    • pp.66-71
    • /
    • 2016
  • The measurements of heat transfer and total friction factors for turbulent flows in the convergent rectangular channels with two opposite in-line ribbed walls are reported. The study has covered three different angled ribs ($30^{\circ}$, $45^{\circ}$ and $60^{\circ}$) and Reynolds number in the range of 22,000 to 75,000. The channel, composing of ten isolated copper sections in the length of test section of 1 m, has the channel convergence ratio of $D_{ho}/D_{hi}=0.67$. The results show that the ribs pointing downstream (${\wedge}-shaped$) is somewhat greater than the ribs pointing upstream (V-shaped) in the dimensionless Nusselt number and total friction factors.