• Title/Summary/Keyword: Friction properties

Search Result 1,517, Processing Time 0.04 seconds

Speed Trial Analysis of Korean Ice Breaking Research Vessel 'Araon' on the Big Floes (큰 빙판에서 아라온 호 쇄빙 속도 성능 해석)

  • Kim, Hyun Soo;Lee, Chun-Ju;Choi, Kyungsik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.6
    • /
    • pp.478-483
    • /
    • 2012
  • The speed performances of ice sea trial on the Arctic(2010 & 2011) area were shown different results depend on the ice floe size. Penetration phenomena of level ice was not happened on medium ice floe and tore up by the impact force because the mass of medium ice floe is similar to the mass of Araon which is Korean ice breaking research vessel and did not shut up by the ice ridge or iceberg. The sea trial on the Amundsen sea was performed at the big floe which is classified by WMO(World Meteorological Organization). Three measurements of ice properties and five results of speed trial were obtained with different ice thicknesses and engine powers. To evaluate speed of level ice trial and model test results at the same ice thickness and engine power, the correction method of HSVA(Hamburg Ship Model Basin) was used. The thickness, snow effect, flexural strength and friction coefficient were corrected to compare the speed of sea trial. The analyzed speed at 1.03m thickness of big floe was 5.85 knots at 10MW power and it's 6.10 knots at 1.0m ice thickness and the same power. It's bigger than the results of level ice because big floe was also slightly tore up by the impact force of vessel based on the observation of recorded video.

Representation of Physical Phenomena and Spatial Relations in the Virtual Reality (가상현실에서 물리적 현상들과 공간관계들의 표현)

  • Park, Jong-Hee;Kim, Tae-Kyun
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.6
    • /
    • pp.21-31
    • /
    • 2012
  • The virtual reality consists of a virtual space constructed similar to the reality and agents residing in it. Our virtual space refers to an orderly space that is governed by such physical properties as mass, gravity, friction, and associated rules on top of the usual visual rendering. To construct this virtual world we are to develop virtual agents behaving like humans and the environment surrounding them. In order to improve the existing reactive agents designed to act to their designers' dictation in predetermined space or memory into autonomous agents, we need diverse kinds of knowledge among others related to the spaces for the agents to act in. Our design and implementation focuses on the spatial knowledge among those diverse aspects of knowledge required. The developed knowledge representation scheme is used on a basis for realistic and efficient physical cyber-environment, and as the knowledge structure to simulate the virtual agents' knowledges on spaces.

Measurement of Aerodynamic Properties of Screens for Windbreak Fence using the Apparatus for Testing Screens (공력 저항 측정기를 이용한 방풍펜스 방진막의 공기 투과 저항력 측정)

  • Kim, Rack-Woo;Lee, In-Bok;Hong, Se-Woon;Hwang, Hyun-Seob;Son, Young-Hwan;Kim, Tae-Wan;Kim, Min-Young;Song, Inhong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.145-154
    • /
    • 2013
  • Recently, damage occurrence by wind erosion has been increasing in society. In times past, such problems only took place in desert area ; however, in recent years, the wind erosion problem is spreading out to agricultural land. Wind erosion in agricultural land can cause loss of loam soils, the disturbance of the photosynthesis of the crop fields and serious economic losses. To overcome the mentioned problems, installation of windbreak fence can be recommended which function as disturbing strong wind and wind erosion. However, there is still no proper guideline to install the windbreak fence and the installation used to rely on the intuition of the workers due to the lack of related studies. Therefore, this study measured the aerodynamic resistance of screens of the windbreak fence using the apparatus for testing screens. The apparatus for testing screens was designed to measure pressure loss around the screen. Measured pressure loss by wall friction compensated for pressure loss to calculate the aerodynamic resistance of screens. The result of pressure loss by regression analysis derived the aerodynamic coefficient of Darcy-Forchheimer equation and power law equation. The aerodynamic resistance was constant regardless of the overlapped shape when the screen was overlapped into several layers. Increasing the number of layers of the screen, internal resistance increased significantly more, and pressure loss caused by the screen also increased linearly when the wind speed was certain conditions, but permeability had no tendency. In the future, the results of this study will be applied to the computational fluid dynamics simulation. The simulation models will be also validated in advance by wind tunnel experiments. It will provide standard of a design for constructing windbreak fence.

Does the prosthesis weight matter? 3D finite element analysis of a fixed implant-supported prosthesis at different weights and implant numbers

  • Tribst, Joao Paulo Mendes;Dal Piva, Amanda Maria de Oliveira;Borges, Alexandre Luiz Souto;Rodrigues, Vinicius Aneas;Bottino, Marco Antonio;Kleverlaan, Cornelis Johannes
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.2
    • /
    • pp.67-74
    • /
    • 2020
  • PURPOSE. This study evaluated the influence of prosthesis weight and number of implants on the bone tissue microstrain. MATERIALS AND METHODS. Fifteen (15) fixed full-arch implant-supported prosthesis designs were created using a modeling software with different numbers of implants (4, 6, or 8) and prosthesis weights (10, 15, 20, 40, or 60 g). Each solid was imported to the computer aided engineering software and tetrahedral elements formed the mesh. The material properties were assigned to each solid with isotropic and homogeneous behavior. The friction coefficient was set as 0.3 between all the metallic interfaces, 0.65 for the cortical bone-implant interface, and 0.77 for the cancellous bone-implant interface. The standard earth gravity was defined along the Z-axis and the bone was fixed. The resulting equivalent strain was assumed as failure criteria. RESULTS. The prosthesis weight was related to the bone strain. The more implants installed, the less the amount of strain generated in the bone. The most critical situation was the use of a 60 g prosthesis supported by 4 implants with the largest calculated magnitude of 39.9 mm/mm, thereby suggesting that there was no group able to induce bone remodeling simply due to the prosthesis weight. CONCLUSION. Heavier prostheses under the effect of gravity force are related to more strain being generated around the implants. Installing more implants to support the prosthesis enables attenuating the effects observed in the bone. The simulated prostheses were not able to generate harmful values of peri-implant bone strain.

Estimation of Bearing Capacity for In-Situ Top-Base Method by Field Experimental Plate Load Test (현장평판재하시험에 의한 현장타설형 팽이말뚝기초의 지지력산정)

  • Shin, Eun-Chul;Ahn, Min-Hye
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • The problems like a deterioration of loading bearing capacity, an exaggeration of settlement and lateral deformation are able to be generated, meanwhile structures are built in soft ground. Top-Base method is belonged to a rigidity mat foundation method which is used to surface treatment of soft ground. This method makes an effect to increase the bearing capacity of foundation using friction force, and prevent the differential settlement. Further more, the In-Situ Top-Base method has advantages in the phase of economic effect by reduction of the construction cost and offers an expediency on construction comparing with precast products. This paper presents the way of the estimation of bearing capacity for In-Situ Top-Base method through field plate load test in soft ground. It utilizes the results to a future design by analyzing the properties in the existing study and designs through these analysis and calculating the top-base method's reasonable range.

A Study of Wear Behavior for Sealing Graphite at Elevated Temperature (씰링 그라파이트의 고온 마모 거동에 관한 연구)

  • Kim, Yeonwook;Kim, Jaehoon;Yang, Hoyoung;Park, Sunghan;Lee, Hwankyu;Kim, Bumkeun;Lee, Seungbum;Kwak, Jaesu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.113-120
    • /
    • 2013
  • Graphite is commonly used as a solid lubricant leading to low friction coefficient and abrasion. In this study, wear behavior of sealing graphite(HK-6) at elevated temperature was evaluated. Reciprocating wear test was carried out as wear occurred graphite as a seal(HK-6) is positioned between the liner and driving shaft. Variables which are temperature, sliding speed and contact load are set. This study suggest optimized environment conditions through the wear properties of graphite.

A New k-$\varepsilon$ Model for Prediction of Transitional Boundary-Layer Under Zero-Pressure Gradient (압력 구배가 없는 평판 천이 경계층 유동을 예측하기 위한 k-$\varepsilon$모형의 개발)

  • Baek, Seong-Gu;Im, Hyo-Jae;Jeong, Myeong-Gyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.305-314
    • /
    • 2001
  • A modified model is proposed for calculation of transitional boundary layer flows. In order to develop the eddy viscosity model for the problem, the flow is divided into three regions; namely, pre-transition region, transition region and fully turbulent region. The pre-transition eddy-viscosity is formulated by extending the mixing length concept. In the transition region, the eddy-viscosity model employs two length scales, i.e., pre-transition length scale and turbulent length scale pertaining to the regions upstream and the downstream, respectively, and a universal model of stream-wise intermittency variation is used as a function bridging the pre-transition region and the fully turbulent region. The proposed model is applied to calculate three benchmark cases of the transitional boundary layer flows with different free-stream turbulent intensity (1%∼6%) under zero-pressure gradient. It was found that the profiles of mean velocity and turbulent intensity, local maximum of velocity fluctuations, their locations as well as the stream-wise variation of integral properties such as skin friction, shape factor and maximum velocity fluctuations are very satisfactorily predicted throughout the flow regions.

The Rheological Behaviors of Solid-Liquid Transfer Emulsion (고상-액상 전이형 에멀젼의 레올로지 거동)

  • Park, Byeong-Gyun;Han, Jong-Sub;Lee, Sang-Min;Lee, Cheon-Koo;Yoon, Moung-Seok
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.2 s.51
    • /
    • pp.135-140
    • /
    • 2005
  • A solid state emulsion haying high velocity gradient shows two important transition ranges in the plot of storage modulus(G') as a function of shear strain, when the state is changed from solid to liquid. However, a solid state emulsion having low velocity gradient shows only one apparent transition range when the change from solid to liquid state takes place. The result implies the importance of the surface properties in the solid state emulsion. The addition of water phase in the solid state emulsion reduces the modulus in the modulus in the surface transition range by increasing interfacial friction and weakening the matrix. The addition of pigments increases the modulus in the modulus in the surface transition range by reinforcing the matrix, when there is no wafer phase in the solid state emulsion. When the solid state emulsion has water phase, however, the addition of pigments decreases the modulus in the modulus in the surface transition range.

Semismic Analysis of Building Structures with Base Isolation System (Base Isolation System이 있는 건물의 지진하중에 대한 동적해석)

  • 이동근;이정석
    • Computational Structural Engineering
    • /
    • v.3 no.1
    • /
    • pp.71-81
    • /
    • 1990
  • The isolation system is installed at the base of a structure for reduction of the earthquake damage to the structure. In the 1970', when the laminated rubber bearing(LR type) is developed, the isolation system is put in practice. And recently a new isolation system(SR type), including the laminated rubber bearing with the friction plate beneath, is developed. In this thesis, a study on the base isolation effect, for various of the isolation system and structure properties, is performed. The results of this parameter study show that the isolation system can reduce the earthquake damage of the building structures significantly. As the period of isolation system increases, the isolation effect increases and converges to zero damage. As the number of story increases, the isolation effect reduces. It is found that SR type isolation system is more effective than LR type because SR type base isolation system reduces acceleration, drift and total displacement.

  • PDF

Corrosion and Wear Properties of Cold Rolled 0.087% Gd Lean Duplex Stainless Steels for Neutron Absorbing Material

  • Choi, Yong;Baik, Youl;Moon, Byung-Moon;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.164-168
    • /
    • 2016
  • Lean duplex stainless steels with 0.087 wt.% gadolinium (Gd) were inert arc-melted and cast in molds of size $10mm{\times}10mm{\times}20mm$. The micro-hardnesses of the rolling direction (RD), transverse direction (TD) and short transverse (ST) direction were $258.5H_V$, $292.3H_V$, and $314.7H_V$, respectively. A 33% cold rolled specimen had the crystallographic texture that (100) pole was mainly concentrated to the normal direction (ND) and (110) pole was concentrated in the center of ND and RD. The corrosion potential and corrosion rate in artificial seawater and $0.1M\;H_2SO_4$ solution were in the range of $105.6-221.6mV_{SHE}$, $0.59-1.06mA/cm^2$, and $4.75-8.25mV_{SHE}$, $0.69-1.68mA/cm^2$, respectively. The friction coefficient and wear loss of the 0.087 w/o Gd-lean duplex stainless steels in artificial seawater were about 67% and 65% lower than in air, whereas the wear efficiency was 22% higher. The corrosion and wear behaviors of the 0.087 w/o Gd-lean duplex stainless steels significantly depended on the Gd phases.