• Title/Summary/Keyword: Friction pile

Search Result 283, Processing Time 0.02 seconds

Bearing Capacity of In-situ Cast Piles in Weak Sedimentary Rocks (미고결 퇴적암층에서의 현장타설말뚝 지지력 특성 연구)

  • Sim, Dong-Hyun;Kim, Ki-Seop;Yu, Seok-Joon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.100-109
    • /
    • 2004
  • Is this study, results of static pile load tests of in-situ cast piles in weak or uncemented sedimentary rock layers have been analyzed and presented. Consdierations on the characteristics of soils sedimentary rocks have been made. From the measurements of strain gauges and extensometers the relationship of unit skim friction versus displacement and that of unit end bearing versus displacement have been obatined to verity the characteristics of bearing capacity of this uncemented sedimentary rock layers. Also, a comparison has been made between ultimate skin friction in compression and tension.

  • PDF

Skin Friction and End Bearing Resistances of Rock-socketed Piles Observed in Bi-directional Pile Load Tests (양방향 재하시험 결과를 이용한 암반소켓 현장타설말뚝의 주면 마찰력과 선단 지지력)

  • Song, Myung-Jun;Park, Yung-Ho;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.7
    • /
    • pp.17-36
    • /
    • 2013
  • In this paper, the empirical relations of skin friction and end bearing resistance with the results of site investigation in soft rock are proposed through the analysis of bi-directional pile load tests of rock socketed drilled shafts performed at large offshore bridge foundations and high-rise building projects (13 test piles in 4 projects). The site investigation and drilling for bi-directional pile load tests were performed at the centers of test piles, and f-w curves for skin friction and q-w curves for end bearing were plotted based on load-transfer measurements. From the above curves, the empirical relations of skin friction and end bearing resistance with the results of site investigation depending on the mobilized displacement are determined by multiple regression analysis and compared with previous studies. Since the f-w and q-w curves of rock-socketed piles in Korea show hardening behavior according to mobilized displacement, the developed empirical relations by the mobilized displacement are more reasonable than those of previous studies which could not consider the mobilized displacement and suggested the ultimate capacity with unconfined compressive strength only. Particularly, the developed equations correlated with unconfined compressive strength show the best correlations among the equations correlated with other parameters.

Recycling of In-site waste soil material to fill a hollow between PHC pile and Earthen wall

  • Jang, Myung-Houn;Choi, Hee-Bok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.5
    • /
    • pp.510-517
    • /
    • 2012
  • This study evaluated the recycling potential of in-site waste soil as pile back filling material (PBFM). We performed experiments to check workability, segregation resistance, bond strength, direct shear stress test, and dynamic load test using in-site waste soil in coastal areas. We found that PBFM showed better performance than general cement paste in terms of workability, segregation resistance, and bond strength. On the other hand, the structural performance of PBFM was slightly lower than that of general cement paste due to the skin friction force of pile by Pile Driving Analyzer and direct shear stress. However, because this type of performance degradation in terms of structure can be improved through the use of piles with larger diameter or by changing the type of pile, considering the economics and environment, we considered that recycling of PBFM has sufficient value.

Field test and research on shield cutting pile penetrating cement soil single pile composite foundation

  • Ma, Shi-ju;Li, Ming-yu;Guo, Yuan-cheng;Safaei, Babak
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.513-521
    • /
    • 2020
  • In this paper, due to the need for cutting cement-soil group pile composite foundation under the 7-story masonry structure of Zhenghe District and the shield tunnel of Zhengzhou Metro Line 5, a field test was conducted to directly cut cement-soil single pile composite foundation with diameter Ф=500 mm. Research results showed that the load transfer mechanism of composite foundation was not changed before and after shield tunnel cut the pile, and pile body and the soil between piles was still responsible for overburden load. The construction disturbance of shield cutting pile is a complicated mechanical process. The load carried by the original pile body was affected by the disturbance effect of pile cutting construction. Also, the fraction of the load carried by the original pile body was transferred to the soil between the piles and therefore, the bearing capacity of composite foundation was not decreased. Only the fractions of the load carried by pile and the soil between piles were distributed. On-site monitoring results showed that the settlement of pressure-bearing plates produced during shield cutting stage accounted for about 7% of total settlement. After the completion of pile cutting, the settlements of bearing plates generated by shield machine during residual pile composite foundation stage and shield machine tail were far away from residual pile composite foundation stage which accounted for about 15% and 74% of total settlement, respectively. In order to reduce the impact of shield cutting pile construction on the settlement of upper composite foundation, it was recommended to take measures such as optimization of shield construction parameters, radial grouting reinforcement and "clay shock" grouting within the disturbance range of shield cutting pile construction. Before pile cutting, the pile-soil stress ratio n of composite foundation was 2.437. After the shield cut pile is completed, the soil around the lining structure is gradually consolidated and reshaped, and residual pile composite foundation reaches a new state of force balance. This was because the condensation of grouting layer could increase the resistance of remaining pile end and friction resistance of the side of the pile.

Shaft resistance of bored cast-in-place concrete piles in oil sand - Case study

  • Barr, L.;Wong, R.C.K.
    • Geomechanics and Engineering
    • /
    • v.5 no.2
    • /
    • pp.119-142
    • /
    • 2013
  • Pile load tests using Osterberg cells (O-cell) were conducted on cast-in-place concrete piles founded in oil sand fill and in situ oil sand at an industrial plant site in Fort McMurray, Alberta, Canada. Interpreted pile test results show that very high pile shaft resistance (with the Bjerrum-Burland or Beta coefficient of 2.5-4.5) against oil sand could be mobilized at small relative displacements of 2-3% of shaft diameter. Finite element simulations based on linear elastic and elasto-plastic models for oil sand materials were used to analyze the pile load test measurements. Two constitutive models yield comparable top-down load versus pile head displacement curves, but very different behaviour in mobilization of pile shaft and end bearing resistances. The elasto-plastic model produces more consistent matching in both pile shaft and end bearing resistances whereas the linear elastic under- and over-predicts the shaft and end bearing resistances, respectively. The mobilization of high shaft resistance in oil sand under pile load is attributed to the very dense and interlocked structure of oil sand which results in high matrix stiffness, high friction angle, and high shear dilation.

Bearing capacity Calculation of Displacement in-situ Concrete Pile (비배토 현장타설 콘크리트 말뚝의 지지력 산정에 관한 연구)

  • 박종배;박태순
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03a
    • /
    • pp.65-84
    • /
    • 2000
  • Europe and US which have more restrictive regulations than Korea about the noise and vibration during construction are using Auger-cast Pile to reduce the problem relating with noise and vibration. However Auger-cast Pile has problems like difficult quality control and low bearing capacity. In Europe, Displacement in-situ concrete Pile has been used to sove that problems since 1990s, and Korea has performed the test construction in 1997 and it has been used as the real structural foundation since 1998. Test and real construction results verified that the allowable capacity of the pile(diameter = 410mm) is between 70 and 100ton. Though De Beer & Van Imps design method utilizing CPT result is used to calculate the bearing capacity of the Displacement in-situ Pile, Korea is dependant upon the SPT as the sounding test, so design method utilizing SPT result is necessary to promote the application of the pile. To find out reasonable design method using SPT result, rearing capacity of the pile constructed in sand and clay in Korea was calculated using Meyerhof, SPT-CPT translation method, Nordlund, Douglas and DM-7 method, and the calculation results were compared to the load test result. Analysis result shows that SPT-CPT translation method is more reliable than others and economical design can be possible because it considers efficiently the friction capacity of Displacement in-situ Pile.

  • PDF

Analysis of Pile Behaviors with Friction Resistance of Skin of Steel Pipe Pile in Ground where Settlement is Predicted (침하가 예측되는 지반에서 강관말뚝 주면 마찰 저항에 따른 말뚝의 거동 분석)

  • Lee, Kicheol;Shin, Sehee;Lee, Haklin;Kim, Dongwook
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.107-117
    • /
    • 2020
  • Open-ended steel pipe piles have outside frictional force and inside frictional resistance in which blocked soil acts on the inside of the steel pipe during installation. It is expected that the ultimate load will change depending on the inside and outside resistance. And, if the ground on which the piles were constructed is clay soil, it is predicted that it will have effect on the negative skin friction caused by the ground settlement. Therefore, in this study, the behavior according to the inside and outside resistance characteristics of steel pipe piles was analyzed numerically, and the frictional force distribution, axial load and settlements before and after the occurrence of ground settlement were calculated. As a result of the analysis, the inside frictional resistance had less influence than the outside frictional resistance. However, inside frictional resistance is considered to be one of the important factors considering the effect on the overall pile behavior, and both resistance factors need to be considered in the design process.

Effects of Pile Diameters on Soil Plug Behavior of Open -Ended Steel Pipe Pile (말뚝직경 변화에 따른 개단강관말뚝의 관내토 거동특성)

  • Lee, Seung-Rae;Kim, Yeong-Sang;Jo, Seong-Eun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.87-93
    • /
    • 1994
  • Factors which affect the capacity and the soil plug condition of an open-ended pile can be broadly divided into three categories:i.e., pile conditions, soil conditions and penetration methods. It has been found that the relative density and the horizontal stress have much effects on the soil plug behavior than other soil conditions. Also, it has been found that the pile diameter is the most important factor among pile conditions. However, a few investigations have been performed to account for both soil conditions and pile conditions. In this paper, a number of calibration chamber tests have been conducted with three different sized open-ended model piles. The model pile was driven into siliceous sand, with varying soil conditions, to clarify coupled effects of pile diameter and soil conditions on the plug behavior, the capacity, and the load trasfer mechanixm of soil plug. The model piles are composed of two stainless steel pipes so as to measure the plug capacity, the tip resistance, and the outside skin friction. separately.

  • PDF

A Study for the Development of Pile Design Method Considering Settlement and Compression (침하량과 압축량을 고려한 말뚝의 설계법 개발을 위한 연구)

  • Lim, Jong-Seok;Ha, Hyuk;Jung, Sang-Kyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1287-1294
    • /
    • 2006
  • A pile is compressed with settlements when loading and bearing capacity is altered along relative displacement of pile/soil on settlement and compression. Settlements of pile displaying limit skin friction is different from displaying tip resistance. Therefore, it is an error in traditional method that bearing capacity of pile is estimated from the sum of limit skin fraction and tip resistance. Accordingly, development of design method considering behavior of load-settlement is needed. In this study, we would like to establish the base for development of design method considering bearing capacity altering along displacement on settlement and compression. For this, we established system and substance of design method. And in order to establish relationship of load-settlement of pile on the type of soil, we analyzed and arranged existing database and pile loading test. On design method, settlement is assumed gradually on each capacity level being assumed gradually. Bearing capacity developing on the pile is obtained on each settlement level. Until the obtained bearing capacity will be equal to assumed capacity, this process is continued with increasing settlement. Load-settlement curve for soil classification is sketched in the process computing settlement on assumed capacity. This design method will be materialized by computation program.

  • PDF

Degradation in Intimate Bearing Capacity of Open -ended Pile During Simulated Horizontal Earthquake Shaking (유사화된 지진 진동에 의한 개단 말뚝의 지지력 저감)

  • 최용규
    • Geotechnical Engineering
    • /
    • v.11 no.4
    • /
    • pp.75-86
    • /
    • 1995
  • After open -ended model pipe pile, which was composed of inner tube and outer tube was driven by different installation methods, degradation in open -ended pipe pile capacity was studied during simulated horizontal seismic shaking, which was modeled by records of actual earthquake. Drgradation in ultimate capacity of open -ended pipe pile during simulated earthquake was about 20% in impact pile and was approached up to about 40% in vibratal pile. Most of degradation in ultimate pile capacity was occured in the outer shaft surface and degradations in outer skin friction, toe resistance of steel, and plugging force were about 80%, 10%, 10%, respectively. out of ultimate pile capacity. It appeared that this trend did not depend upon the different installation methods of pile.

  • PDF