• 제목/요약/키워드: Friction oscillator

검색결과 9건 처리시간 0.023초

충돌 및 가동단 마찰을 고려한 지진하중을 받는 교량의 거동분석 (Effects of Pounding and friction upon Bridge Motions under Seismic Excitations)

  • 김상효
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall
    • /
    • pp.193-202
    • /
    • 1999
  • effect of pounding and friction between oscillators upon global response behaviors of a bridge system under seismic excitations are examined in this study. For convenience an idealized mechanical model is proposed which still retains the dynamic characteristics of bridge motions using multiple oscillators, Each oscillator is consisting of four degrees-of-freedom to implement the pounding between the adjacent oscillators and friction at movable supports, The impact element and bi-linear model are utilized for pounding and friction at movable supports. The impact element and bi-linear model are utilized for pounding and friction respectively. Also the effects of abutments are investigated by adding the addition oscillators consisting of two degrees-of-freedom. The effects of pounding and frictions are determined using the proposed model and the effect of the abutment is also verified, It is found that both pounding and friction affect the bridge responses significantly while the first pounding occurs between the abutment and the nearby oscillator.

  • PDF

통계적 마찰 모델을 활용한 stick-slip 진동 해석과 정확성 검증 (Stick-slip vibration analysis by using statistical friction model and accuracy verification of the friction model)

  • 유홍희;강원석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.830-832
    • /
    • 2014
  • In this study, friction stick-slip vibration're interpretation of the phenomenon, we used a statistical model of friction. In a previous study using a definite friction factor, but to a dynamic simulation using a constantly changing during the integration time by a Monte Carlo simulation method, not the average coefficient of friction and the dynamic friction coefficient and a constant value in this study.

  • PDF

마찰력이 작용하는 동적 시스템의 점착 구현을 위한 마찰모델 제안 및 정확성 검증 (A Dry Friction Model to Realize Stick for Simulation of the System with Friction and Accuracy Verification of the Friction Model)

  • 최찬규;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제22권8호
    • /
    • pp.748-755
    • /
    • 2012
  • Friction causes self-excited vibration, stick-slip vibration and any other friction-induced phenomena. That kinds of vibrations cause chatter and squeal. In order to predict such vibrations accurately, employing an accurate friction model is very important because a dynamic behavior of a system with friction is dominantly governed by a friction model. A Coulomb friction model is the most widely known model. Coulomb friction model is useful model to obtain analytical solutions of the system with friction and the model gives relatively good simulation result. However, defining a friction force at a stick state in simulation is hard because of the characteristic itself and a Coulomb friction model is discontinuous function between a static and a dynamic friction coefficient. Therefore, applying the Coulomb friction model to a simulation is not appropriate. In order to resolve these problems, an approximated Coulomb friction model was developed using simple and continuous function. However, an approximated Coulomb friction model cannot realize stick. Therefore, an approximated Coulomb friction model cannot describe friction phenomena accurately. In order to analyze a friction phenomenon accurately, a friction model for a simulation was proposed in this paper. A proposed friction model realizes stick and gives reasonably good results compared to results obtained by the simulation employing an approximated Coulomb friction model. Accuracy of a proposed friction model was verified by comparing experimental results.

Estimation of viscous and Coulomb damping from free-vibration data by a least-squares curve-fitting analysis

  • Slemp, Wesley C.H.;Hallauer, William L. Jr.;Kapania, Rakesh K.
    • Smart Structures and Systems
    • /
    • 제4권3호
    • /
    • pp.279-290
    • /
    • 2008
  • The modeling and parameter estimation of a damped one-degree-of-freedom mass-spring system is examined. This paper presents a method for estimating the system parameters (damping coefficients and natural frequency) from measured free-vibration motion of a system that is modeled to include both subcritical viscous damping and kinetic Coulomb friction. The method applies a commercially available least-squares curve-fitting software function to fit the known solution of the equations of motion to the measured response. The method was tested through numerical simulation, and it was applied to experimental data collected from a laboratory mass-spring apparatus. The mass of this apparatus translates on linear bearings, which are the primary source of light inherent damping. Results indicate that the curve-fitting method is effective and accurate for both perfect and noisy measurements from a lightly damped mass-spring system.

편적 선형 진동계의 실험과 해석 (Experiment and Analysis of Piecewise-Linear Vibration systems)

  • 최연선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.461-467
    • /
    • 2000
  • Mechanical problems are basically three dimensional nonlinear dynamic problems, which makes it difficult to solve. The difficulties are tried to overcome by modeling, i.e., simplifications of the system with the assumptions or negligence of minute effects. However, the correctness or usefulness of the model should be verified through the comparison with experimental results, which is the process of physical understanding of the system. The understanding of physics of the system make it possible to design or operation of the system. The effects of clearance and friction are always difficult problems in mechanical system due to its nonlinearity. The nonlinearity comes from piecewise-linear characteristics of the stiffness and damping of the system. The modeling of piecewise-linearity and the experimental result are discussed in this paper for impact and friction oscillator and rotor rubbing problem, which is the combination of impact and friction problems.

  • PDF

Dynamic behaviors of the bridge considering pounding and friction effects under seismic excitations

  • Kim, Sang-Hyo;Lee, Sang-Woo;Mha, Ho-Seong
    • Structural Engineering and Mechanics
    • /
    • 제10권6호
    • /
    • pp.621-633
    • /
    • 2000
  • Dynamic responses of a bridge system with several simple spans under longitudinal seismic excitations are examined. The bridge system is modeled as the multiple oscillators and each oscillator consists of four degrees-of-freedom system to implement the poundings between the adjacent oscillators and the friction at movable supports. Pounding effects are considered by introducing the impact elements and a bi-linear model is adopted for the friction force. From the parametric studies, the pounding is found to induce complicated seismic responses and to restrain significantly the relative displacements between the adjacent units. The smaller gap size also restricts more strictly the relative displacement. It is found that the relative displacements between the abutment and adjacent pier unit became much larger than the responses between the inner pier units. Consequently, the unseating failure could take a place between the abutment and nearby pier units. It is also found that the relative displacements of an abutment unit to the adjacent pier unit are governed by the pounding at the opposite side abutment.

회전형 초음파모터의 소형 위상차 제어기 개발 (Development of Compact Phase-difference Controller for an Ultrasonic Rotary Motor)

  • 이동창;이명훈;이의학;이선표
    • 한국정밀공학회지
    • /
    • 제23권8호
    • /
    • pp.64-71
    • /
    • 2006
  • In this paper, a uniform speed controller for an ultrasonic rotary motor is developed using the phase-difference method. The phase difference method uses traveling waves to drive the ultrasonic motor. The traveling waves are obtained by adding two standing waves that have a different phase to each other. A compact phase-difference driver system is designed and integrated by combining VCO(Voltage Controlled Oscillator) and phase shifter. Theoretically the relationship between the phase difference in time and the rotational speed of the ultrasonic motor is sine function, which is verified by experiments. Then a series of experiments under various loading conditions are conducted to characterize the motor's performance that is the relationship between the speed and torque. Proportional-integral control is adopted for the uniform speed control. The proportional control unit calculates the compensating phase-difference using the rotating speed which is measured by an encoder and fed back. Integral control is used to eliminate steady-state errors. Differential control for reducing overshoot is not used since the response of ultrasonic motor is prompt due to its low inertia and friction-driving characteristics. The developed controller demonstrates reasonable performance overcoming disturbing torque and the changes in material properties due to continuous usage.

실교 가진시험을 통한 현수교의 고유진동특성 연구 (Vibrational Characteristics of Suspension Bridge by Full-Scale Test)

  • 조선규;김선곤
    • 한국철도학회논문집
    • /
    • 제9권1호
    • /
    • pp.12-17
    • /
    • 2006
  • The bridge to be analyzed is a self-anchored suspension bridge which is constructed within the country. Forced vibration test was performed with oscillator for verification of safety, maintenance and management. In this study, the feasibility of deduction was verified with the modified analysis model by comparing natural frequency, natural mode and damping ratio of the real bridge, which are obtained from the vibration test of the whole bridge after construction of 3-dimensional self-anchored cable suspension bridge, with the eigenvalue of analytic computation model and evaluating them. As a result of study, the friction of bridge bearing must be considered to get the natural frequencies of flexural vibration, and evaluating the polar moment of inertia is critical factor in analysis modeling in case of torsional vibration. The logarithmic damping ratio of the test appeared to exceed the ordinary one assumed at the design phase.