• Title/Summary/Keyword: Friction Torque

Search Result 377, Processing Time 0.022 seconds

Study of Engine Oil Jet System Effect on Engine Friction (Engine Oil Jet System이 Engine Friction에 미치는 영향에 대한 연구)

  • Min, Sun-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.687-692
    • /
    • 2016
  • When turbochargers are applied to engines, the temperature of the engine becomes high, making the cooling of pistons very important. To solve this problem, an oil jet is used. The oil jet provides oil to the underside of piston for cooling. When an oil jet is used, oil pump size-up and oil cooler are needed because of the increased oil flow rate and higher oil temperature. On the other hand, these increase the friction torque of the engine. This study examined how much the friction torque of an engine increases by an oil jet, oil cooler, and oil pump size-up. In addition, the proportions of the friction torque of the engine increased by each part were measured by changing the engine assembly condition. At low speed, the oil pump and oil cooler had a larger effect on the friction torque than the other factors. At high speed, oil cooler had a larger effect than the other factors.

Experimental Assessment of Drag Torque of Wet Clutch (습식 클러치 드래그 토크 특성의 실험적 평가)

  • Kim, Hansol;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.269-274
    • /
    • 2017
  • Currently, fuel efficiency becomes one of critical issues for automotive industries as concerns about environmental and energy problems grow. In an automatic transmission of an automobile, a drag torque due to a viscous drag of a fluid between friction and clutch plates is one of factors that degrade fuel economy. In this work, the drag torque characteristics of a wet clutch was experimentally investigated with respect to rotational speed, temperature of automatic transmission fluid (ATF), and gap between friction and clutch plates. The experimental results showed that drag torque increases to a certain level, and then decrease to the steady state value with increasing rotational speed. This behavior may be associated with two-phase flow of air and ATF at gap between friction and clutch plates. Also, it was found that the maximum drag torque value decreased as ATF viscosity decreases with increasing temperature. However, it was shown that the point at which the maximum drag torque occurs was not significantly affected by the ATF temperature. In addition, maximum drag torque was found to decrease as the gap between friction and clutch plates increased from 0.1 mm to 0.2 mm. Furthermore, it was observed that the generation of maximum drag torque was delayed as the gap increased. The outcomes of this work are expected to be helpful to gain a better understanding of drag torque characteristic of a wet clutch, and may therefore be useful in the design of wet clutch systems with improved performance.

Efficiency Improvement of Transfer Drive Gear Bearings for an Automotive Automatic Transmission (승용차 자동변속기용 트랜스퍼 드라이브 기어 베어링의 효율개선 방법에 관한 연구)

  • Lee, In Wook;Han, Sung Gil;Gwak, Beom-Seop;Lee, Ho Sung;Song, Chul Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.40-46
    • /
    • 2021
  • An automatic transmission of automobiles enables comfortable driving experience with lower transmission shifting jerks. However, the assembly structure is more complicated and requires additional components with lower efficiency than the manual transmission system. Extensive research has been conducted to improve the overall transmission efficiency by optimizing each component of the automatic transmission assembly. This study focuses on enhancing the friction torque of double angular contact ball bearings used in automatic transmission. The friction torque of the bearing varies with the operating conditions such as the operational load and rotating speed. Since reducing the friction torque of the bearing tends to deteriorate the durability of the bearing, it is necessary to design the bearing having a minimum required friction torque by determining the durability life of an automatic transmission assembly, In this study, the theoretical life and friction torque of conventional and newly-developed bearings are calculated. The difference in the friction torque between the new and existing bearings are also evaluated.

Performance Analysis of High-Speed Ceramic Ball Bearings Under Thrust Loads in EHD Lubrication (축방향 하중을 받는 고속 세라믹 볼베어링에 대한 EHD 윤활영역에서의 성능 해석)

  • 반종억;김경웅
    • Tribology and Lubricants
    • /
    • v.14 no.2
    • /
    • pp.26-34
    • /
    • 1998
  • This paper presents a high-speed performance analysis of ball bearings with ceramic balls under thrust loads. The sliding velocity profiles between a ball and raceways were obtained by the 3-D quasi-dynamic equations of motion including both centrifugal force and gyroscopic moment derived by vector matrix algebra. The friction at the contact areas was obtained by the Bair-Winer's non-Newtonian rheological model and the Hamrock-Dowson's central film thickness in EHL analysis. The nonlinear equations were solved by the Newton-Raphson method and the underrelaxation iterative method. The friction torques and ball behaviors with various loads, ball materials, and contact angles were predicted by this model. It was shown that the friction torque was sensitive to thrust load and contact angle, and that the friction torque and the pitch angle of the bearing with ceramic balls are smaller than those of the bearing with steel balls.

An Experimental Study of Friction Coefficient Variation Due to Vibration for Bolted Joint (볼트 체결시 진동에 의한 마찰계수 변화에 관한 실험)

  • Song, Chang-Kyu;Lee, Sang-Don;Cho, Yung-Joo
    • Tribology and Lubricants
    • /
    • v.23 no.2
    • /
    • pp.61-65
    • /
    • 2007
  • It is very important to connect machinery and maintain it. This is usually done by bolt joint. There are two ways in connecting the bolt joint : the angle method and the torque method. The torque method is a method that let the clamping force maintain. The underhead of the bolt's head and the thread friction are the main influences. This study focuses on how the clamping farce and friction coefficient change under the condition in vibrating the underhead of the bolt's head part. As a result, under vibration condition, we found out that the clamping farce increases, while the friction coefficient decreases.

Robust Force Control of Pneumatic Manipulator (공압 매니퓰레이터의 강인 힘제어)

  • Park, Jeong-Gyu;Noritsugu, Toshiro
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.540-552
    • /
    • 1996
  • In this paper, a compensation method of disturbance using a disturbance observer is proposed for a force control of a pneumatic robot manipulator. The generated torque by a pneumatic actuator can be estimated based on the pressure signals. The inner torque control system is constructed by feeding back the generated torque to improve the dynamic characteristics of the actuator. In order to reduce the influence of disturbances comprising friction torque, parameter variations of plant and environment and so on, the reaction torque control system is constructed with a disturbance observer which estimates the disturbances based on the reference input to the inner torque control system and the reaction torque sensed with a forced sensor. From some simulations and experiments, it is confirmed that the proposed control system is effective to improve the robustness for the friction torque and the parameter change of object in the force control of a pneumatic robot manupulator.

Study on Measuring the Performance of an Air Tool Operating at 100,000 RPM Class (100,000 RPM급으로 회전하는 에어공구의 성능측정에 관한 연구)

  • Cho, Soo-Yong;Kim, Eun-Jong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.3 s.20
    • /
    • pp.44-50
    • /
    • 2003
  • An experiment is conducted for measuring the performance of an air tool, which is operated at 100,000 RPM in an unloaded state with very low torque. A 551 kPa in gauge pressure is supply to the inlet of an air tool. An experimental apparatus is developed as a friction type dynamometer. Inlet total pressure, air flow rate, rotational speed and operating force are measured simultaneously. Torque, output power and specific output power are obtained with different rotational speeds. Those are compared with the experimental results which were obtained by a commercial dynamometer. However, no commercial dynamometers are available for measuring the torque above 30,000 RPM. In order to reduce the rotational speed, a reduction gear is applied between the air tool and the commercial dynamometer. Torque and power obtained by the commercial dynamometer show $55\%$ lower than those obtained by the developed friction type dynamometer, because the mass is added to the rotor of air tool for the braking system of the commercial dynamometer and power loss is generated by the reduction gear. From the compared results, the friction type dynamometer should be applied for measuring the performance of the air tool operating at low torque and high RPM.

Well Trajectory Modelling Considering Torque and Drag (토크와 드래그를 고려한 시추궤도 모델링 연구)

  • Jihoon Kim;Junhyung Choi;Doyoung Kim;Taeil Park;Daesung Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.1
    • /
    • pp.51-60
    • /
    • 2023
  • Unlike the vertical drilling in the directional drilling should be minimized torque and drag in the well trajectory that avoided problems such as drillstring transformation, casing wear and key-seating. These torque and drag magnitude is determined by variations such as the well trajectory geometry, drilling mud, drillstring type and kick-off point. Therefore, it is essential to consider these variations for designing directional well trajectory. In this study, it was selected well trajectory by the most common build-hold type well and calculated torque and drag on each section by Analytical friction model. Analysis indicates that torque and drag could be minimized by using high lubricity drilling mud, kick-off point appropriate according to the well geometry and possible minimize dogleg severity. The results of this study is useful to minimize torque and drag from directional well trajectory design.

The Friction Properties on the Loosening of Bolted Joints (I: Thread Friction Experiments) (볼트 결합부 풀림에 관한 마찰 특성 (제 I 보 : 나사 마찰 실험))

  • ;;Yanyao Jiang;Ming Zhang
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.1-5
    • /
    • 2003
  • By using an approach developed to determine the torque-tension relationship for bolted joints, frictional properties of several typical bolted joints were studied experimentally. The specific property by bolted joints certify that the most significant influence of materials and bearing surface condition. Experiments on thread friction shows that prevailing torque nuts with distorted threads provide benefit for preventing self-loosening of the nut. Repeated tightening-loosening generally increases frictions in a bolted joint. It was noted that the data scatter of the experimental results of frictions in a belted joint may overshadow the influence of size. speed, and contact positions. The results from the experimental investigation will help to better design bolted joints.

Experimental Study the on Hysteretic Characteristics of Rotational Friction Energy Dissipative Devices (회전 마찰형 제진장치의 이력특성에 대한 실험적 연구)

  • Park, Jin-Young;Han, Sang Whan;Moon, Ki-Hoon;Lee, Kang Seok;Kim, Hyung-Joon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.227-235
    • /
    • 2013
  • Friction energy dissipative devices have been increasingly implemented as structural seismic damage protecting systems due to their excellent seismic energy dissipating capacity and high stiffness. This study develops rotational friction energy dissipative devices and verifies experimentally their cyclic response. Based on the understanding of the differences between the traditional linear-motion friction behavior and the rotational friction behavior, the configuration of the frictional surface was determined by investigating the characteristics of the micro-friction behavior. The friction surface suggested in this paper consists of brake-lining pads and stainless steel sheets and is normally stressed by high-strength bolts. Based upon these frictional characteristics of the selected interface, the rotational friction energy dissipative devices were developed. Bolt torque-bearing force tests, rotational friction tests of the suggested friction interfaces were carried out to identify their frictional behavior. Test results show that the bearing force is almost linearly proportional to the applied bolt torque and presents stable cyclic response regardless of the experimental parameters selected this testing program. Finally, cyclic tests of the rotational friction energy dissipative devices were performed to find out their structural characteristics and to confirm their stable cyclic response. The developed friction energy dissipative devices present very stable cyclic response and meet the requirements for displacement-dependent energy dissipative devices prescribed in ASCE/SEI 7-10.