• Title/Summary/Keyword: Friction Temperature

Search Result 1,078, Processing Time 0.025 seconds

Dynamic Behavior Characteristics of Piston in Reciprocating Compressor (왕복동식 압축기 피스톤의 역학적 거동특성)

  • Cho, Ihnsung
    • Tribology and Lubricants
    • /
    • v.29 no.2
    • /
    • pp.105-110
    • /
    • 2013
  • Refrigeration and air-conditioning compressors used in home appliances, including refrigerators and air conditioners, are typically hermetic-type reciprocating compressors. Because the shell is sealed by welding, it should be designed to have a semi-permanent life. The energy consumption of a hermetic-type reciprocating compressor is low, but because it operates continuously to maintain a constant temperature inside the refrigerator, it has a certain base load. In this type of compressor, the driving motor operates at a high speed (about 3,000 - 3,600 rpm), which causes valve damage, friction, wear, and high-frequency noise. Many studies have been conducted to solve these problems. To enhance the reliability and efficiency of the reciprocating compressor, the design conditions and operating environment of journal bearings should be considered. Dynamic behavior analysis should be carried out in terms of the discharge pressure. The results showed that the load (discharge pressure) increases in the forward lookup zone and decreases in the backward lookup zone. When the revolution speed is increased, the maximum load decreases in the region where the maximum load operates.

The Types of Road Weather Big Data and the Strategy for Their Use: Case Analysis (도로 기상 빅데이터 유형별 활용 전략: 국내외 사례 분석)

  • Hahm, Yukun;Jun, YongJoo;Kim, KangHwa;Kim, Seunghyun
    • The Journal of Bigdata
    • /
    • v.2 no.2
    • /
    • pp.129-140
    • /
    • 2017
  • Weather acts through low visibility, precipitation, high winds, and temperature extremes to affect driver capabilities, vehicle performance (i.e., traction, stability and maneuverability), pavement friction, roadway infrastructure, crash risk, traffic flow, and agency productivity. Recently a variety of road weather big data sources such as CCTV, road sensor/systems, car sensor have been developed to solve the weather-related problems, This study identifies and defines the types and characteristics of these sources to suggest how to utilize them for car safety and efficiency as well as road management through analyzing domestic and oversea cases of road weather big data applications.

  • PDF

Effect of Scancium Content on The Hot Extrusion of Al-Zn-Mg-(Sc) Alloy (Al-Zn-Mg-(Sc) 합금의 고온가공성에 미치는 Sc 함량의 영향)

  • Kim, Jin-Ho;Kim, Jeoung-Han;Yeom, Jong-Taek;Lee, Dong-Geun;Park, Nho-Kwang
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.184-187
    • /
    • 2006
  • The effects of scandium content and extrusion parameters on Al-Zn-Mg-(Sc) alloys were examined. Three kinds of Al-Zn-Mg-(Sc) alloys with up to 0.30 wt.% Sc were prepared. The compression test was conducted to investigate the microstructure evolution during hot deformation. Despite of microstructural differences in the alloys, deformation behaviors were very similar. After extrusion at $350^{\circ}C$ with the ram speed of 15mm/sec, AA7075 showed a moderate surface quality compared with other Sc containing alloys, which was attributed to low flow stresses. AA7075 showed coarse-grained bands in surface region. With the ram speed of 1.5mm/sec at $350^{\circ}C$, the surface quality of the alloys was sound due to low friction stresses and deformation heating. As the Sc content increased, tensile strengths and elongations at room temperature improved.

  • PDF

Exergetic analysis for optimization of a rotating equilateral triangular cooling channel with staggered square ribs

  • Moon, Mi-Ae;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.3
    • /
    • pp.229-236
    • /
    • 2016
  • Exergetic analysis was introduced in optimization of a rotating equilateral triangular internal cooling channel with staggered square ribs to maximize the net exergy gain. The objective function was defined as the net exergy gain considering the exergy gain by heat transfer and exergy losses by friction and heat transfer process. The flow field and heat transfer in the channel were analysed using three-dimensional Reynolds-averaged Navier-Stokes equations under the uniform temperature condition. Shear stress transport turbulence model has been selected as a turbulence closure through the turbulence model test. Computational results for the area-averaged Nusselt number were validated compared to the experimental data. Three design variables, i.e., the angle of rib, the rib pitch-to-hydraulic diameter ratio and the rib width-to-hydraulic diameter ratio, were selected for the optimization. The optimization was performed at Reynolds number, 20,000. Twenty-two design points were selected by Latin hypercube sampling, and the values of the objective function were evaluated by the RANS analysis at these points. Through optimization, the objective function value was improved by 22.6% compared to that of the reference geometry. Effects of the Reynolds number, rotation number, and buoyancy parameter on the heat transfer performance of the optimum design were also discussed.

Development of a Pad Conditioning Method for ILD CMP using a High Pressure Micro Jet System

  • Lee, Hyo-Sang;DeNardis, Darren;Philipossian, Ara;Seike, Yoshiyuki;Takaoka, Mineo;Miyachi, Keiji;Doi, Toshiro
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.26-31
    • /
    • 2007
  • The goal of this study is to determine if High Pressure Micro Jet (HPMJ) conditioning can be used as a substitute for, or in conjunction with, conventional diamond pad conditioning. Five conditioning methods were studied during which 50 ILD wafers were polished successively in a 100-mm scaled polisher and removal rate (RR), coefficient of friction (COF), pad flattening ratio (PFR) and scanning electron microscopy (SEM) measurements were obtained. Results indicated that PFR increased rapidly, and COF and removal rate decreased significantly, when conditioning was not employed. With diamond conditioning, both removal rate and COF were stable from wafer to wafer, and low PFR values were observed. SEM images indicated that clean grooves could be achieved by HPMJ pad conditioning, suggesting that HPMJ may have the potential to reduce micro scratches and defects caused by slurry abrasive particle residues inside grooves. Regardless of different pad conditioning methods, a linear correlation was observed between temperature, COF and removal rate, while an inverse relationship was seen between COF and PFR.

Polishing Pad Analysis and Improvement to Control Performance (연마성능 제어를 위한 연마패드표면 해석과 개선)

  • Park, Jae-Hong;Kinoshita, Masaharu;Yoshida, Koichi;Park, Ki-Hyun;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.839-845
    • /
    • 2007
  • In this paper, a polishing pad has been analyzed in detail, to understand surface phenomena of polishing process. The polishing pad plays a key role in polishing process and is one of the important layer in polishing process, because it is a reaction layer of polishing[1]. Pad surface physical property is also ruled by pad profile. The profile and roughness of pad is controlled by different types of conditioning tool. Conditioning tool add mechanical force to pad, and make some roughness and profile. Formed pad surface will affect on polishing performance such as RR (Removal Rate) and uniformity in CMP Pad surface condition is changed by conditioning tool and dummy run and is stable at final. And this research, we want to reduce break-in and dummy polishing process by analysis of pad surface and artificial machining to make stable pad surface. The surface treatment or machining enables to control the surface of polishing pad. Therefore, this research intends to verify the effect of the buffing process on pad surface through analysis of the removal rate, friction force and temperature. In this research, urethane polishing pad which is named IC pad(Nitta-Haas Inc.) and has micro pore structure, is studied because, this type of pad is most conventional type.

A Study on the Dry Wear Characteristics of Austempered Ductile Cast Iron (오스템퍼링 處理된 球狀黑鉛鑄鐵의 乾燥磨滅 特性에 관한 硏究)

  • 강명순;전태옥;김형자;박흥식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.489-496
    • /
    • 1988
  • This paper is studied to know wear mechanism in variation of austempering temperature and holding time of austempered ductile cast iron against mating material SM45C hardened by heat treatment. The wear tests were carried out by rubbing the annular surface of two test pieces in dry sliding friction. The wear mechanism was investigated by scanning electron microscopy and the retained austenite volume fraction was investigated by X-ray diffractometer. The experimental results show that the wear characteristics depend largely on the oxidation of the testing materials which is influenced by the sliding velocity and distance. The retained austenite has a negative effect during frictional contact because it has increased severe wear by softened surface layer. It is shown experimentally that hard metals have lower frictional resistance and hence the resistance to adhesion is increased due to stronger interatomic linking bonds and increase in the surface energy.

Experimental and Numerical Investigation on Heat Transfer and Fluid Flow Characteristics in the Ribbed Square Channel (거친 사각채널에서 열전달과 유체유동 특성에 관한 실험 및 수치해석)

  • Kang, Ho-Keun;Baer, Sung-Taek;Lee, Dae-Hee;Ahn, Soo-Whan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.275-283
    • /
    • 2006
  • Experiment and three dimensional numerical investigations of incompressible turbulent flow through square channels with one- and two-sided ribbed walls are performed to determine pressure drop and heat transfer. The CFX(version 5.7) software package is used for the computation. The ribbed walls have a $45^{\circ}$ inclined square rib. Uniform heat flux is maintained on whole inner heat transfer channel area. The numerical results coincide with experimental data that obtained for $7,600{\le}Re{\le}24.900$, the pitch-to-rib height ratio (p/e) of 8.0. and the rib height-to-channel hydraulic diameter ratio ($e/D_h$) of 0.0667. The results show that values of local heat transfer coefficient and friction factor in the channel with two-sided ribbed wall are higher than those in the channel with one-sided ribbed walls.

Modeling of Metal Cutting Using Finite Element Method (유한요소법을 이용한 금속절삭의 모델링)

  • 김경우;김동현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1799-1802
    • /
    • 2003
  • The commercial success of a new product is influenced by the time to market. Shorter product leadtimes are of importance in a competitive market. This can be achieved only if the product development process can be realized in a relatively small time period. New cutting inserts are developed by a time consuming trial and error process guided by empirical knowledge of the mechanical cutting process. The effect of previous cutting on chip formation and the surface residual stresses has been studied. The chip formation is not affected much. There is only a minor influence from the residual stress on the surface from tile first cutting on the second pass chip formation. Thus, it is deemed to be sufficient to simulate only the first pass. The influence of the cutting speed and feed on the residual stresses has been computed and verified by the experiments. It is shown that the state of residual stresses in the workpiece increases with the cutting speed. This paper presents experimental results which can be used for evaluating computational models to assure robust solutions. The general finite element code ABAQUS/Standard has been used in the simulations. A quasi-static simulation with adiabatic heating was performed. The path for separating the chip from the workpiece is predetermined. The agreement between measurements and calculation is good considering the simplifications introduced.

  • PDF

A Measurement of Size of the Open Crack using Ultrasound Thermography (초음파 서모그라피를 이용한 개방 균열의 크기 측정)

  • Cho, Jai-Wan;Seo, Yong-Chil;Jung, Seung-Ho;Jung, Hyun-Kyu;Kim, Seung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.3
    • /
    • pp.218-223
    • /
    • 2007
  • The dissipation of high-power ultrasonic energy at the faces of the defect causes an increase in temperature. It is resulted from localized selective heating in the vicinity of cracks because of the friction effect. In this paper the measurement of size and direction of crack using UET(Ultrasound Excitation Thermography) is described. The ultrasonic pulse energy is injected into the sample in one side. The hot spot, which is a small area around the crack tip and heated up highly, is observed. The hot spot, which is estimated as the starting point of the crack, is seen in the nearest position from the ultrasonic excitation point. Another ultrasonic pulse energy is injected into the sample in the opposite side. The hot spot, the ending point of the crack, is seen in the closest distance from the injection point also. From the calculation of the coordinates of both the first hot spot and the second hot spot observed, the size and slope of the crack is estimated. In the experiment of STS fatigue crack specimen(thickness 14mm), the size and the direction of the crack was measured.