• Title/Summary/Keyword: Friction Materials

Search Result 1,475, Processing Time 0.023 seconds

Sliding Wear Properties of Graphite as Sealing Materials for Cut off Hot Gas (고온차단 기밀용 그라파이트의 고온 미끄럼마모 특성 평가)

  • Kim, YeonWook;Kim, JaeHoon;Yang, HoYeong;Park, SungHan;Lee, HwanKyu;Kim, BumKeun;Lee, SeungBum;Kwak, JaeSu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.11
    • /
    • pp.1349-1354
    • /
    • 2013
  • Sealing structure to prevent flowing hot gas into the driving device, located between the driving shaft and the liner of On-Off valve for controlling the hot gas flow path was studied. Wear occurs due to the constant movement of the driving shaft controlled by actuator on graphite as the sealing material. In this paper, the dynamic wear behavior in high temperature of graphite(HK-6) to be used as sealing material was evaluated. Reciprocating wear test was carried out for the graphite(HK-6) to the relative motion between shaft materials(W-25Re). The results of friction coefficient and specific wear rate according to contact load, sliding speed at room temperature and $485^{\circ}C$ considering the actual operating environment were evaluated. Through the SEM analysis of the worn surface, third body as lubricant films were observed and lubricant effect of third body was considered.

A Study on Hot Extrusion Characteristics of Particulate Reinforced Aluminium Matrix Composite. (입자분산강화 알루미늄 복합재의 압출가공특성에 관한 연구)

  • Gwon, Hyeok-Cheon;Yun, Ui-Park
    • Korean Journal of Materials Research
    • /
    • v.5 no.8
    • /
    • pp.953-959
    • /
    • 1995
  • It was investigated that reinforced species, billet condition and extrusion variation in Al 6061 composite material effected on extrusion process of particulate reinforced composite material. The strength of composite material with reinforcement species revealed SiC$\sub$w/> A1$_2$O$\sub$3f/ > A1$_2$O$\sub$3f/ > A1$_2$O$\sub$3f/ orderly. K$\sub$w/ increased as volute fraction increased in all composite material. The composite materials reinforced by A1$_2$ $O_3$required the larger pressure in hot extrusion process than those by SiC$\sub$p/ at all condition. Extrusion process tended to decrease as the semi-angle of extrusion dies increased because larger contact area caused larger shear friction. Extrusion temperature went up about 50$^{\circ}C$ in low elevated deformation temperature. In extrusion temperature above 500$^{\circ}C$, severe tearing occurred on extrusion surface. More reinforcement in volume fraction, more hot tearing.

  • PDF

Design Factor Analysis of End-Effector for Oriental Melon Harvesting Robot in Greenhouse Cultivation (시설재배 참외 수확 로봇용 엔드이펙터의 설계 요인 분석)

  • Ha, Yu Shin;Kim, Tae Wook
    • Journal of Bio-Environment Control
    • /
    • v.22 no.3
    • /
    • pp.284-290
    • /
    • 2013
  • This study analyzed the geometric, compressive, cutting and friction properties of oriental melons in order to design a gripper capable of soft handling and a cutter for cutting oriental melon vine among the end effector of oriental melon as a preliminary step for developing the end effector of the robot capable of harvesting oriental melons in protected cultivation. As a result, the average length, diameter at the midpoint, weight, volume and roundness of the oriental melons were 108 mm, 70 mm, 188 g, 333 mL and 3.8 mm. Nonlinear regression analysis was performed on the equation $W=L^a{\times}D_2^b$ with variation of the length (L) and diameter (D2) of the weight (W) of the oriental melons. As a result, it was shown that there was a correlation between a of 2.0279 and b of -0.9998 as a constant value. The average diameter of the oriental melon vine was 3.8 mm, and most vines were distributed within a radius of 5 mm from the center. The average yield value, compressive strength and hardness of the oriental melons were $36.5N/cm^2$, $185.7N/cm^2$ and $636.7N/cm^2$, respectively. The average cutting force and shear strength of the oriental melon vines were $2.87{\times}10^{-2}\;N$ and $5.60N/cm^2$, respectively. The maximum friction coefficient of the oriental melons was rubber of 0.609, followed by aluminium of 0.393, stainless steel of 0.177 and teflon of 0.079. It was considered possible to apply it to the size of the gripper and cutter, turning radius, dynamics of drive motor and selection of materials and their quality in light of the position error and safety factor according to the movement when designing end effector based on the analyzed data.

Trend in Research and Application of Hard Carbon-based Thin Films (탄소계 경질 박막의 연구 및 산업 적용 동향)

  • Lee, Gyeong-Hwang;Park, Jong-Won;Yang, Ji-Hun;Jeong, Jae-In
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.111-112
    • /
    • 2009
  • Diamond-like carbon (DLC) is a convenient term to indicate the compositions of the various forms of amorphous carbon (a-C), tetrahedral amorphous carbon (ta-C), hydrogenated amorphous carbon and tetrahedral amorphous carbon (a-C:H and ta-C:H). The a-C film with disordered graphitic ordering, such as soot, chars, glassy carbon, and evaporated a-C, is shown in the lower left hand corner. If the fraction of sp3 bonding reaches a high degree, such an a-C is denoted as tetrahedral amorphous carbon (ta-C), in order to distinguish it from sp2 a-C [2]. Two hydrocarbon polymers, that is, polyethylene (CH2)n and polyacetylene (CH)n, define the limits of the triangle in the right hand corner beyond which interconnecting C-C networks do not form, and only strait-chain molecules are formed. The DLC films, i.e. a-C, ta-C, a-C:H and ta-C:H, have some extreme properties similar to diamond, such as hardness, elastic modulus and chemical inertness. These films are great advantages for many applications. One of the most important applications of the carbon-based films is the coating for magnetic hard disk recording. The second successful application is wear protective and antireflective films for IR windows. The third application is wear protection of bearings and sliding friction parts. The fourth is precision gages for the automotive industry. Recently, exciting ongoing study [1] tries to deposit a carbon-based protective film on engine parts (e.g. engine cylinders and pistons) taking into account not only low friction and wear, but also self lubricating properties. Reduction of the oil consumption is expected. Currently, for an additional application field, the carbon-based films are extensively studied as excellent candidates for biocompatible films on biomedical implants. The carbon-based films consist of carbon, hydrogen and nitrogen, which are biologically harmless as well as the main elements of human body. Some in vitro and limited in vivo studies on the biological effects of carbon-based films have been studied [$2{\sim}5$].The carbon-based films have great potentials in many fields. However, a few technological issues for carbon-based film are still needed to be studied to improve the applicability. Aisenberg and Chabot [3] firstly prepared an amorphous carbon film on substrates remained at room temperature using a beam of carbon ions produced using argon plasma. Spencer et al. [4] had subsequently developed this field. Many deposition techniques for DLC films have been developed to increase the fraction of sp3 bonding in the films. The a-C films have been prepared by a variety of deposition methods such as ion plating, DC or RF sputtering, RF or DC plasma enhanced chemical vapor deposition (PECVD), electron cyclotron resonance chemical vapor deposition (ECR-CVD), ion implantation, ablation, pulsed laser deposition and cathodic arc deposition, from a variety of carbon target or gaseous sources materials [5]. Sputtering is the most common deposition method for a-C film. Deposited films by these plasma methods, such as plasma enhanced chemical vapor deposition (PECVD) [6], are ranged into the interior of the triangle. Application fields of DLC films investigated from papers. Many papers purposed to apply for tribology due to the carbon-based films of low friction and wear resistance. Figure 1 shows the percentage of DLC research interest for application field. The biggest portion is tribology field. It is occupied 57%. Second, biomedical field hold 14%. Nowadays, biomedical field is took notice in many countries and significantly increased the research papers. DLC films actually applied to many industries in 2005 as shown figure 2. The most applied fields are mold and machinery industries. It took over 50%. The automobile industry is more and more increase application parts. In the near future, automobile industry is expected a big market for DLC coating. Figure 1 Research interests of carbon-based filmsFigure 2 Demand ratio of DLC coating for industry in 2005. In this presentation, I will introduce a trend of carbon-based coating research and applications.

  • PDF

A Comparative and Parametric Study of Slope Stability Using a Probability-based Method in Railway Slope (철도 사면에서 확률론적 기법을 이용한 사면안정성 매개변수 비교연구)

  • Choi, Chan-Yong;Kim, Ju-Yong;Eum, Ki-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.4
    • /
    • pp.17-25
    • /
    • 2012
  • In this study, it was carried out reliability analysis and slope stability analysis in a standard cross-sectional embankment on high speed railway. It was confirmed that changing tendency of safety factor with various parameter of each soil materials properties and trends of the probability of failure according to the reliability index. The results have shown that a safety factor were relatively large affected an cohesions and internal friction angle of soil compared to the unit weight of soil. Also, most of the standard cross-sectional embankment in high speed railway was generally evaluated the level of below average (below average) by the reliability analysis according to criterion in US. Army but the 12m height of dry embankment case was shown bad condition as Poor.

Interaction analysis of Continuous Slab Track (CST) on long-span continuous high-speed rail bridges

  • Dai, Gonglian;Ge, Hao;Liu, Wenshuo;Chen, Y. Frank
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.713-723
    • /
    • 2017
  • As a new type of ballastless track, longitudinal continuous slab track (CST) has been widely used in China. It can partly isolate the interaction between the ballastless track and the bridge and thus the rail expansion device would be unnecessary. Compared with the traditional track, CST is composed of multi layers of continuous structures and various connecting components. In order to investigate the performance of CST on a long-span bridge, the spatial finite element model considering each layer of the CST structure, connecting components, bridge, and subgrade is established and verified according to the theory of beam-rail interaction. The nonlinear resistance of materials between multilayer track structures is measured by experiments, while the temperature gradients of the bridge and CST are based on the long-term measured data. This study compares the force distribution rules of ballasted track and CST as respectively applied to a long span bridge. The effects of different damage conditions on CST structures are also discussed. The results show that the additional rail stress is small and the CST structure has a high safety factor under the measured temperature load. The rail expansion device can be cancelled when CST is adopted on the long span bridge. Beam end rotation caused by temperature gradient and vertical load will have a significant effect on the rail stress of CST. The additional flexure stress should be considered with the additional expansion stress simultaneously when the rail stress of CST requires to be checked. Both the maximum sliding friction coefficient of sliding layer and cracking condition of concrete plate should be considered to decide the arrangement of connecting components and the ultimate expansion span of the bridge when adopting CST.

Stability Analysis of Geocell Reinforced Slope During Rainfall (강우 시 지오셀 보강 사면의 안정성 평가에 관한 연구)

  • Shin, Eun-Chul;Kim, Jang-Ill
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.33-41
    • /
    • 2017
  • In this study, the increment effect of safety factor according to increasing of horizontal permeability coefficient is analyzed when geocell is installed on the slope for protection. To evaluate the horizontal permeability and reinforcement effect, the laboratory tests such horizontal permeability test were conducted. According to the laboratory test results, as the porosity rate of geocell increases, the coefficient of horizontal permeability is also increased. And also, regardless of the different types of filled materials, the coefficient of horizontal permeability is improved in a geocell reinforced ground compare with the non-reinforced ground. Laboratory test results and the rainfall intensity were applied to the numerical modeling of slope for seepage analysis and stability analysis of slope by using Soilworks, numerical analysis program. As a result of the slope stability analysis, it is confirmed that the installed geocell on the slope facilitates the drainage of water on the surface of slope. Hence, the ground water elevation is suppressed. Therefore, the safety factor of the slope is increased by the increasing of the internal friction angle, apparent cohesion, and coefficient of horizontal permeability by reinforcing the slope with geocell.

An experimental study on the improving noise characteristic of hydraulic power unit (유압동력 발생장치의 소음특성 개선을 위한 실험적 연구)

  • Lee, Gi Chun;Lee, Yong Bum
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.638-643
    • /
    • 2013
  • Nowadays, the hydraulic power unit (HPU) has been increased its working pressure and enlarged its capacity in order to improve the performance of the hydraulic system, but it produces noise leveled around 110dB(A) during operation. Recently, due to the reinforcement of industrial safety regulations and the requirement of improving work environment, a separated HPU room is installed at outside or underground of the building as to reduce the noise from HPU, but there are also problems of power loss owing its fluid friction of pipe system and of deficient accessibility during its failure accident. In this study, experiment is performed to improve the noise characteristics with installing a soundproof chamber to minimize the power loss and exclude effectively the high leveled noise, which is generated during the power conversion of HPU.

Improvement in Tribological Properties of Carbon Steel Sintered by Powder Metallurgy (분말 야금에 의해 소결된 강철의 트라이볼로지 특성 향상)

  • Choi, S.I.M.;Karimbaev, R.;Pyun, Y.S.;Amanov, A.
    • Tribology and Lubricants
    • /
    • v.36 no.4
    • /
    • pp.244-252
    • /
    • 2020
  • Materials manufactured by powder metallurgy (PM) are widely used in various applications such as water pump, shock absorber, and airplane components due to the reduction in the cost and weight. In this study, tribological properties of carbon steel subjected by surface treatment were investigated. The main purpose is to increase the strength and improve the tribological properties by reducing pores that formed by PM. Moreover, the surface treatment was carried out at room and high temperatures (RT and HT). The surface roughness of the untreated (NON) and treated (AFTER) samples was measured. It was found that the surface roughness was reduced after both the RT AFTER and HT AFTER compared to RT NON sample. The tribological properties of the samples were performed against bearing steel ball under dry conditions. The friction coefficient of the RT NON samples was reduced by 22% and 56% RT AFTER and HT AFTER, respectively. The wear volume of the RT NON sample was also reduced by 43% and 87% RT AFTER and HT AFTER, respectively. Tribocorrosion tests were also performed and it was found that the surface of the RT AFTER, HT AFTER samples was less corroded compared to RT NON sample. The HT AFTER sample demonstrated a relatively higher corrosion potential in comparison with the RT AFTER samples. Hence, it was confirmed that after surface modification the surface roughness and hardness of the samples were significantly improved resulting in improvement in tribological and tribocorrosion behaviors of PM carbon steel.

Energy effects on MHD flow of Eyring's nanofluid containing motile microorganism

  • Sharif, Humaira;Naeem, Muhammad N.;Khadimallah, Mohamed A.;Ayed, Hamdi;Bouzgarrou, Souhail Mohamed;Al Naim, Abdullah F.;Hussain, Sajjad;Hussain, Muzamal;Iqbal, Zafar;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • v.10 no.4
    • /
    • pp.357-367
    • /
    • 2020
  • The impulse of this paper is to examine the influence of unsteady flow comprising of Eyring-Powell nanofluid over a stretched surface. This work aims to explore efficient transfer of heat in Eyring-Powell nanofluid with bio-convection. Nanofluids possess significant features that have aroused various investigators because of their utilization in industrial and nanotechnology. The influence of including motile microorganism is to stabilize the nanoparticle suspensions develop by the mixed influence of magnetic field and buoyancy force. This research paper reveals the detailed information about the linearly compressed Magnetohydrodynamics boundary layer flux of two dimensional Eyring-Powell nanofluid through disposed surface area due to the existence of microorganism with inclusion the influence of non- linear thermal radiation, energy activation and bio-convection. The liquid is likely to allow conduction and thickness of the liquid is supposed to show variation exponentially. By using appropriate similarity type transforms, the nonlinear PDE's are converted into dimensionless ODE's. The results of ODE's are finally concluded by employing (HAM) Homotopy Analysis approach. The influence of relevant parameters on concentration, temperature, velocity and motile microorganism density are studied by the use of graphs and tables. We acquire skin friction, local Nusselt and motil microorganism number for various parameters.