• Title/Summary/Keyword: Friction Damper

Search Result 191, Processing Time 0.036 seconds

Vibration Analysis of an Amplitude Proportional Friction Damper System (변위비례식 마찰댐퍼 시스템의 진동해석)

  • 박동훈;최명진
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.171-179
    • /
    • 2003
  • An Amplitude Proportional Friction Damper (APFD) is considered in order to improve the characteristics of Coulomb friction damper. The frictional force is proportional to the amplitude in APFD system and the system is non-linear as is Coulomb damper system. A free vibration analysis on the 1-DOF system has made to demonstrate the characteristics of the APFD system. The results show that APFD system has similar damping characteristics to the viscous damper. Also, the solution for the response of a base-excited system with APFD is developed through the application of a Fourier series to represent the frictional force of APFD. It is assumed that no stick-slips occur during any portion of the steady-state oscillation.

Approximate solution for a building installed with a friction damper : revisited and new result (마찰감쇠기가 설치된 건물 응답의 근사해 : 재 고찰 및 새로운 결과)

  • Min, Kyung-Won;Seong, Ji-Young;Lee, Sung-Kyung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.850-854
    • /
    • 2009
  • Approximate analysis for a building installed with a friction damper is revisited to get insight of its dynamic behavior. Energy balance equation is used to have a closed analytical form solution of dynamic magnification factor (DMF) for the building with combined viscous and friction damping. It is found out that DMF is dependent on friction force ratio and resonance frequency. Linear transfer function from input external force to output building displacement is obtained by simplifying DMF equation. Root mean square of building displacement is derived under earthquake-like random excitation. Finally, design of friction damper is proposed by processing target control ratio, damping ratio factor, and friction force in sequence.

  • PDF

Design of Friction Dampers for Seismic Response Control of a SDOF Building (단자유도 건물의 지진응답제어를 위한 마찰감쇠기 설계)

  • Min, Kyung-Won;Seong, Ji-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.22-28
    • /
    • 2010
  • Approximate analysis for a building installed with a friction damper is performed to get insight of its dynamic behavior. Energy balance equation is used to have a closed analytical form solution of dynamic magnification factor(DMF). It is found out that DMF is dependent on friction force ratio and resonance frequency. Approximation of DMF and equivalent damping ratio of a friction damper is proposed with such assumption that the building with a friction damper shows harmonic steady-state response and narrow banded response behavior near resonance frequency. Linear transfer function from input external force to output building displacement is suggested from the simplified DMF equation. Root mean square of a building displacement is derived under earthquake-like random excitation. Finally, design procedure of a friction damper is proposed by finding friction force corresponding to target control ratio. Numerical analysis is carried out to verify the proposed design procedure.

Optimal design of tuned mass damper considering the friction between the moving mass and the rail (레일의 운동마찰력을 고려한 TMD 최적 설계)

  • Lee, Sang-Hyun;Woo, Sung-Sik;Cho, Seung-Ho;Chung, Lan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.582-587
    • /
    • 2007
  • In this study, based on the results from the sinusoidal base excitation analyses of a single degree of freedom system with a tuned mass damper (TMD), it is verified that optimal friction force can improve the performance of a TMD like a linear viscous damper which has been usually used in general TMD. The magnitude of the optimal friction increases with increasing mass ratio of the TMD and decreases with increasing structural damping. Particularly, it is observed that the optimized friction force gives better control performance than the optimized viscous damping of the TMD. However, because the performance of the TMD considerably deteriorates when the friction force increases over the optimal value, it is required to keep the friction force from exceeding the optimal value.

  • PDF

Optimal Design of Tuned Mass Damper Considering the Friction between the Moving Mass and the Rail (레일의 운동마찰력을 고려한 TMD 최적 설계)

  • Lee, Sang-Hyun;Woo, Sung-Sik;Cho, Seung-Ho;Chung, Lan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.6 s.123
    • /
    • pp.553-559
    • /
    • 2007
  • In this study, based on the results from the sinusoidal base excitation analyses of a single degree of freedom system with a tuned mass damper (TMD), it is verified that optimal friction force can improve the performance of a TMD like a linear viscous damper which has been usually used in general TMD. The magnitude of the optimal friction increases with increasing mass ratio of the TMD and decreases with increasing structural damping. Particularly, it is observed that the optimized friction force gives better control performance than the optimized viscous damping of the TMD. However, because the performance of the TMD considerably deteriorates when the friction force increases over the optimal value, it is required to keep the friction force from exceeding the optimal value.

Experimental Evaluation for Structural Performance of Hybrid Damper Combining Steel Slit and Rotational Friction Damper (강재 슬릿과 회전 마찰형 감쇠 장치를 결합한 복합 감쇠 장치의 실험적 구조 성능 평가)

  • Kim, Yu-Seong;Kang, Joo-Won;Park, Byung-Tae;Lee, Joon-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.3
    • /
    • pp.101-109
    • /
    • 2019
  • In order to develop the compatible damping device in various vibration source, a hybrid wall-type damper combining slit and friction damper in parallel was developed. Cyclic loading tests and two-story RC reinforced frame tests were performed for structural performance verification. As a result of the 5-cyclic loading test according to KBC-2016 and low displacement cyclic fatigue test, The hybrid wall type damper increased its strength and the ductility was the same as that of the slit damper. In addition, As a result of the two-layer frame test, the reinforced frame had about twice the strength of the unreinforced frame, and the story drift ratio was satisfied to Life Safety Level.

Experimental Study on the Structural Behaviour of Rotary Friction Damper (회전형 복합마찰댐퍼 구조거동에 대한 실험적 연구)

  • Kim, Do-Hyun;Kim, Ji-Young;Kim, Myeong-Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.4
    • /
    • pp.73-80
    • /
    • 2015
  • The new rotary friction damper was developed using several two-nodal rotary frictional components with different clamping forces. Because of these components, the rotary friction damper can be activated by building movements due to lateral forces such as a wind and earthquake. In this paper, various dependency tests such as displacement amplitude, forcing frequency and long term cyclic loading were carried out to evaluate on the structural performance and the multi-slip mechanism of the new damper. Test results show that the multi-slip mechanism is verified and friction coefficients are dependent on displacement amplitute and forcing frequency except long term cyclic loading.

Design of a bracing-friction damper system for seismic retrofitting

  • Lee, Sung-Kyung;Park, Ji-Hun;Moon, Byoung-Wook;Min, Kyung-Won;Lee, Sang-Hyun;Kim, Jinkoo
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.685-696
    • /
    • 2008
  • This paper deals with the numerical model of a bracing-friction damper system and its deployment using the optimal slip load distribution for the seismic retrofitting of a damaged building. The Slotted Bolted Connection (SBC) type friction damper system was tested to investigate its energy dissipation characteristic. Test results coincided with the numerical ones using the conventional model of a bracing-friction damper system. The placement of this device was numerically explored to apply it to the assumed damaged-building and to evaluate its efficiency. It was found by distributing the slip load that minimizes the given performance indicies based on structural response. Numerical results for the damaged building retrofitted with this slip load distribution showed that the seismic design of the bracing-friction damper system under consideration is effective for the structural response reduction.

Control Performance of Friction Dampers Using Flexural Behavior of RC Shear Wall System (전단벽식 구조의 휨거동을 이용한 마찰감쇠기의 제어성능)

  • Chung, Hee-San;Moon, Byoung-Wook;Park, Ji-Hun;Lee, Sung-Kyung;Min, Kyung-Won;Byeon, Ji-Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.8
    • /
    • pp.856-863
    • /
    • 2008
  • High-rise apartments of shear wall system are governed by flexural behavior like a cantilever beam. Installation of the damper-brace system in a structure governed by flexural behavior is not suitable. Because of relatively high lateral stiffness of the shear wall, a load is not concentrate on the brace and the brace cannot perform a role as a damping device. In this paper, a friction damper applying flexibility of shear wall is proposed in order to reduce the deformation of a structure. To evaluate performance of the proposed friction damper, nonlinear time history analysis is executed by SeismoStruct analysis program and MVLEM(multi vertical linear element model) be used for simulating flexural behavior of the shear wall. It is found that control performance of the proposed friction damper is superior to one of a coupled wall with rigid beam. In conclusion, this study verified that the optimal control performance of the proposed friction damper is equal to 45 % of the maximum shear force inducing in middle-floor beam with rigid beam.

Pilot study for investigating the inelastic response of a new axial smart damper combined with friction devices

  • Mirzai, Nadia M.;Hu, Jong Wan
    • Steel and Composite Structures
    • /
    • v.32 no.3
    • /
    • pp.373-388
    • /
    • 2019
  • This study proposes a new concept of an axial damper using the combination of shape memory alloy (SMA), friction devices, and polyurethane springs. Although there are many kinds of dampers to limit the damages, large residual deformation may happen and it causes much repairing cost for restoring the structure to the initial position. Also in some of the dampers, a special technology for assembling and fabricating is needed. One of the most important advantages of this damper is the ability to remove all the residual deformation using SMA plates and simple assembling without any special technology to fabricate. In this paper, four different dampers (in presence or omission of friction devices and polyurethane springs) are investigated. All four cases are analyzed in ABAQUS platform under cyclic loadings. In addition, the SMA plates are replaced by steel ones in four cases, and the results are compared to the SMA dampers. The results show that the axial polyurethane friction (APF) damper could decrease the residual deformation effectively. Also, the damper capacity and dissipated energy could be improved. The analysis showed that APF damper is a good recentering damper with a large amount of energy dissipation and capacity, among others.