• Title/Summary/Keyword: Fresnel equations

Search Result 11, Processing Time 0.02 seconds

Analysis of the Optical Fiber Polarizer Based on the Fresnel Equations (Fresnel 방정식에 근거한 광섬유 편광자의 해석 및 특성분석)

  • 김길환;조준용;이경식
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.10
    • /
    • pp.39-44
    • /
    • 2003
  • The characteristics of the optical fiber polarizer have been analyzed theoretically by using the Fresnel equations and compared with the results computed by the Yeh's electromagnetic theory. we found that they agreed reasonably well each other for the optical fiber polarizer of our interest.

Optimal Design of Electric Field Driven Liquid Crystal Fresnel Lens Using Taguchi's Method (다구찌 실험계획법을 이용한 액정 전계 프레넬 렌즈의 최적 설계)

  • Kim, Bong-Sik;Kim, Jong-Woon;Park, Woo-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.3
    • /
    • pp.218-223
    • /
    • 2012
  • A rigorous electro-optical simulation and ray tracing for an electric field driven liquid crystal Fresnel lens was proposed to obtain design parameters of the electrode pattern of the Fresnel lens. The optimal design was carried out using Taguchi's experimental method for 17.1"($368{\times}229.5$ mm) wide LCD panels with 9 views. For the calculation of the distribution of liquid crystal molecules and the optical transmission of the panel, finite difference method and extended Jones matrix method were used to deal effectively with highly nonlinear and complicated motional equations of the liquid crystal molecules and to obtain the oblique transmission characteristics of the LCD panel. As simulation results, the optimal lengths of the 3 electrodes of the Fresnel lens are 4.0 ${\mu}m$, 30 ${\mu}m$ and 83 ${\mu}m$, respectively, and the locations of the second and third electrodes are 32.9-33.0 ${\mu}m$ and 45.9-46.0 ${\mu}m$, respectively. The optimal applied voltage of the 3 electrodes are found to be 5.75 V, 7.80 V and 11.9 V, respectively.

Design Method for a Total Internal Reflection LED Lens with Double Freeform Surfaces for Narrow and Uniform Illumination

  • Yang, Jae Suk;Park, Jae-Hyeung;O, Beom-Hoan;Park, Se-Geun;Lee, Seung Gol
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.614-622
    • /
    • 2016
  • In this paper, we propose a novel differential equation method for designing a total internal reflection (TIR) LED lens with double freeform surfaces. A complete set of simultaneous differential equations for the method is derived from the condition for minimizing the Fresnel loss, illumination models, Snell’s Law of ray propagation, and a new constraint on the incident angle of a ray on the light-exiting surface of the lens. The last constraint is essential to complete the set of simultaneous differential equations. By adopting the TIR structure and applying the condition for minimizing the Fresnel loss, it is expected that the proposed TIR LED lens can have a high luminous flux efficiency, even though its beam-spread angle is narrow. To validate the proposed method, three TIR LED lenses with beam-spread angles of less than 22.6° have been designed, and their performances evaluated by ray tracing. Their luminous flux efficiencies could be obviously increased by at least 35% and 5%, compared to conventional LED lenses with a single freeform surface and with double freeform surfaces, respectively.

A Study on the Keyhole Dynamics According to Polarization of Laser (레이저의 편광을 고려한 키홀 거동 해석에 관한 연구)

  • Cho, Jung-Ho;Na, Suck-Joo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1307-1311
    • /
    • 2007
  • Three-dimensional transient keyhole profile is numerically analyzed for the case of stationary laser keyhole welding. Volume of fluid (VOF) method is adopted to track the free surface of molten metal based on the three governing equations which are continuity, momentum and energy equations. Multiple reflections of laser beam at the keyhole walls are also included in analysis through a real-time ray tracing technique. In this simulation, especially, polarization of laser is considered as an energy absorption mechanism following the Fresnel reflection theory. Both cases of linearly and circularly polarized beam are simulated and compared. The results show that the theoretically generated keyhole is asymmetrically stretched along the direction of polarization which is already observed experimentally before.

  • PDF

PBR(Physically based Render) simulation considered mathematical Fresnel model for Game Improvement (효율적 게임개선을 위한 프레넬수학모델의 PBR 시뮬레이션)

  • Kim, Seongdong
    • Journal of Korea Game Society
    • /
    • v.16 no.1
    • /
    • pp.111-118
    • /
    • 2016
  • This paper proposes the mathematical model of Fresnel effect used to illuminate and simulate a surface character model for defense game play. The term illumination is used to represent the process by which the amount of light reaching a surface character model used on game play is determined. The character surface shaders generally use a mathematical model to predict how light will reflect on triangles. The shading normally represents the methods used to determine the color and intensity of light reflected toward the viewer for each pixel representing the character surface model of the game. This model computes the reflection and transmission coefficients and compares simulated results to the Fresnel equations for the real game improvement.

An Analysis of the Characteristics of Corrugated Horn for Feeding Beam-waveguide Antenna (빔 웨이브가이드 안테나의 급전을 위한 원뿔형 컬러게이트 혼의 특성 해석)

  • 백경훈;이상설
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.5
    • /
    • pp.666-671
    • /
    • 1990
  • The characteristics of the corrugated conical horn antenna for the satellite communication earth station operating at C band is analyzed and its radiation patterns is measured. We obtain the characterstic equations for corrugated horn in the condition that the balanced hybrid mode is formed on born aperture and calculate radiation patterns in the Fresnel region from the aperture integral expressions obtained by the equivalence principle. The radiation patterns which are calculated for the frequency of 3.85GHz and 6.18GHz are well agreed with the measured data.

  • PDF

Assessing the Refractive Index of Glass Beads for Use in Road-marking Applications via Retroreflectance Measurement

  • Shin, Sang Yeol;Lee, Ji In;Chung, Woon Jin;Cho, Sung-Hoon;Choi, Yong Gyu
    • Current Optics and Photonics
    • /
    • v.3 no.5
    • /
    • pp.415-422
    • /
    • 2019
  • Retroreflection of vehicle headlights, as induced by spherical glass beads, is a key optical phenomenon that provides road-surface markings with greatly enhanced visibility, thus better securing a driver's safety in the nighttime as well as in unclear daytime. Retroreflectance of glass beads is a quite sensitive function of their refractive index, so that measurement of the refractive index of glass specifically in the shape of spherical beads needs to be performed within a reasonable uncertainty that is tolerable for road-marking applications. The Becke line method has been applied in assessing refractive index of such glass beads as e.g. an industrial standard in the Republic of Korea; however, the reference refractive-index liquids are not commercially available these days for refractive index greater than 1.80 due to the toxicity of the constituent materials. As such, high-refractive-index glass beads require an alternate method, and in this regard we propose a practically serviceable technique with uncertainty tantamount to that of the Becke line method: Based on comparison of calculated and measured retroreflectance values of commercial glass beads, we discover that their refractive index can be determined with reasonable precision via the retroreflectance measurement. Specifically, in this study the normalized retroreflectance originating from a single glass sphere is computed as a function of refractive index using the Fresnel equations, which is then validated as coinciding well with retroreflectance values measured from actual specimens, i.e. glass-bead aggregates. The uncertainties involved are delineated in connection with radius and imperfections of the glass beads.

The Study of Fisheye Lens for the Causes of Rapid Illumination Drop and the Ways to Correct on an Image Sensor due to an Ultra Wide Angle of View (어안렌즈 시야각의 광각화에 따른 조도저하의 원인과 개선방안에 관한 연구)

  • Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.5
    • /
    • pp.179-188
    • /
    • 2012
  • Lenses with an ultra wide angle of view are usually called fisheye lenses since a fish can see an ultra wide panoramic view under water. As the angle of view for these kinds of lenses reaches a wide angle, the illumination on an image sensor is reduced by a rapid drop. In this paper, we discuss the causes and the ways to correct for a rapid drop. First, it is treated for the sign convention of directional cosine vectors and normal vectors on the curved surface by means of analytic geometry. And, from the fundamental discussion for these vectors, the rapid illumination drop is numerically analyzed for various kinds of causes by utilizing geometrical optics and radiometry as well as Fresnel equations derived from electromagnetic boundary conditions. As a result, we are able to get the full understanding for the rapid illumination drop and to propose ways to correct effects due to an wide angle of view.

Effects of Multiple Reflections of Polarized Beam in Laser Grooving (레이저 홈가공에서 편광빔의 다중반사 효과)

  • Bang Se-Yoon;Seong Kwan-Je
    • Journal of Welding and Joining
    • /
    • v.23 no.2
    • /
    • pp.81-89
    • /
    • 2005
  • A numerical model for multiple reflection effects of a polarized beam on laser grooving has been developed. The surface of the treated material is assumed to reflect laser irradiation in a fully specular fashion. Combining electromagnetic wave theory with Fresnel's relation, the reflective behavior of a groove surface can be obtained as well as the change of the polarization status in the reflected wave field. The material surface is divided into a number of rectangular patches using a bicubic surface representation method. The net radiative flux far these patch elements is obtained by standard ray tracing methods. The changing state of polarization of the electric field after reflection was included in the ray tracing method. The resulting radiative flux is combined with a set of three-dimensional conduction equations governing conduction losses into the medium, and the resulting groove shape and depth are found through iterative procedures. It is observed that reflections of a polarized beam play an important role not only in increasing the material removal rate but also in forming different final groove shapes. Comparison with available experimental results for silicon nitride shows good agreement for the qualitative trends of the dependence of groove shapes on the electric field vector orientation.

A Simulation of Photocurrent Loss by Reflectance of the Front Glass and EVA in the Photovoltaic Module (전면 유리와 EVA의 광 반사에 의한 PV모듈의 광전류 손실 예측 시뮬레이션)

  • Lee, Sang-Hun;Song, Hee-Eun;Kang, Gi-Hwan;Ahn, Hyung-Keun;Han, Deuk-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.76-82
    • /
    • 2013
  • The solar cell is a device to convert light energy into electric, which supplies power to the external load when exposed to the incident light. The photocurrent and voltage occurred in the device are significant factors to decide the output power of solar cells. The crystalline silicon solar cell module has photocurrent loss due to light reflections on the glass and EVA(Ethylene Vinyl Acetate). These photocurrent loss would be a hinderance for high-efficiency solar cell module. In this paper, the quantitative analysis for the photocurrent losses in the 300-1200 wavelength region was performed. The simulation method with MATLAB was used to analyze the reflection on a front glass and EVA layer. To investigate the intensity of light that reached solar cells in PV(Photovoltaic) module, the reflectance and transmittance of PV modules was calculated using the Fresnel equations. The simulated photocurrent in each wavelength was compared with the output of real solar cells and the manufactured PV module to evaluate the reliability of simulation. As a result of the simulation, We proved that the optical loss largely occurred in wavelengths between 300 and 400 nm.