DOI QR코드

DOI QR Code

The Study of Fisheye Lens for the Causes of Rapid Illumination Drop and the Ways to Correct on an Image Sensor due to an Ultra Wide Angle of View

어안렌즈 시야각의 광각화에 따른 조도저하의 원인과 개선방안에 관한 연구

  • Rim, Cheon-Seog (Department of Applied Optics and Electromagnetics, Hannam University)
  • 임천석 (한남대학교 광.전자물리학과)
  • Received : 2012.08.09
  • Accepted : 2012.08.30
  • Published : 2012.10.25

Abstract

Lenses with an ultra wide angle of view are usually called fisheye lenses since a fish can see an ultra wide panoramic view under water. As the angle of view for these kinds of lenses reaches a wide angle, the illumination on an image sensor is reduced by a rapid drop. In this paper, we discuss the causes and the ways to correct for a rapid drop. First, it is treated for the sign convention of directional cosine vectors and normal vectors on the curved surface by means of analytic geometry. And, from the fundamental discussion for these vectors, the rapid illumination drop is numerically analyzed for various kinds of causes by utilizing geometrical optics and radiometry as well as Fresnel equations derived from electromagnetic boundary conditions. As a result, we are able to get the full understanding for the rapid illumination drop and to propose ways to correct effects due to an wide angle of view.

어안렌즈(fisheye lens)란 통상 초 광각의 시야각을 가지는 렌즈를 일컫는다. 초 광각의 시야각을 가지는 렌즈에서는 주변부시야각으로 갈수록 상의 조도가 급격히 저하하게 되는데, 본 논문에서는 이의 원인과 개선방안에 관해 논의한다. 왜냐하면 어안렌즈와 같은 초 광각의 렌즈에서는 기하광학적인 수차특성보다 오히려 시야각의 안정적인 확보가 광학적인 성능을 훨씬 더 좌우할 수 있기 때문이다. 그러므로 이를 위해, 먼저, 방향코사인벡터의 부호규약과 곡면 상에서의 법선벡터의 방향을 해석기하학적으로 다룬다. 이어서 해석기하학적인 논의를 바탕으로 조도저하의 다양한 원인들에 대해 수치 및 원리적인 분석을 실시하고, 개선에 대한 방안들을 제시한다.

Keywords

References

  1. R. Kingslake, A History of the Photographic Lens (Academic Press, San Diego, USA, 1989), Chapter 10.
  2. Yahoo, http://images.search.yahoo.com.
  3. G. M. Smith and R. M. Green, "Estimating forest canopy closure using hemispherical photography," Swansea Geographer 31, 1-16 (1994).
  4. E. Schwalbe, H. G. Maas, M. Kenter, and S. Wagner, "Hemispheric image modeling and analysis techniques for solar radiation determination in forest ecosystems," Photogrammetric Engineering and Remote Sensing 75, 375-384 (2009). https://doi.org/10.14358/PERS.75.4.375
  5. P. M. Marine and O. A. Rawashdeh, "A first-person view system for remotely operated vehicles using a fisheye-lens," AIAA Infotech at Aerospace 2010, 2010-3513 (2010).
  6. S. Thibault and J. C. Artonne, "Panomorph lenses: a low cost solution for panoramic surveillance," Proc. SPIE 6203, 62030S (2006).
  7. H. M. Spencer, J. M. Rodgers, and J. M. Hoffman, "Optical design of a panoramic, wide spectral band, infrared fisheye lens," Proc. SPIE 6342, 63421P (2006).
  8. W. A. Ayres, "Cycloramic optical system," U.S. Patent 2,244,235 (1938).
  9. T. Hiyashi, "Wide angle optical system for door viewer," U.S. Patent 4,082,434 (1978)
  10. D. Faklis and G. M. Morris, "Spectral properties of multiorder diffractive lenses," Appl. Opt. 34, 2462-2468 (1995). https://doi.org/10.1364/AO.34.002462
  11. W. J. Smith, Modern Optical Engineering (McGraw-Hill Inc., NY, USA, 2001), Chapter 2, 8.
  12. Optical Research Associates, Inc., "CODE V version 10.2," http://www.opticalres.com.
  13. M. L. Boas, Mathematical Methods in the Physical Sciences (John Wiley & Sons, NJ, USA, 2005), Chapter 6.
  14. S. S. Lee, Geometrical Optics (Kyohakyongusa, Seoul, Korea, 1985), Chapter 1.
  15. E. Hecht, Optics (Addison Wesley, MA, USA, 2001), Chapter 4, 9.
  16. C. S. Rim, J. H. Jo, and S. Chang, CODE V for Fundamental Optical Design (Dasung Press, Seoul, Korea, 2001), Chapter 4.

Cited by

  1. Design of a Tele-centric Wide Field Lens with High Relative Illumination and Low Distortion Using Third-order Aberration Analysis vol.19, pp.6, 2015, https://doi.org/10.3807/JOSK.2015.19.6.679