• Title/Summary/Keyword: Freshwater Adaptation

Search Result 23, Processing Time 0.031 seconds

Flood and Adaptation of Insect at the Freshwater Wetland (담수습원의 범람과 곤충의 적응)

  • Park, Hee Cheon;Woen Kim;Chong Un Ri
    • The Korean Journal of Ecology
    • /
    • v.8 no.4
    • /
    • pp.205-214
    • /
    • 1985
  • At the Changnyeung natural bod, the flood in the freshwater wetland and the adaptation of the insect at this area were investigated by the species diversity index and the cluster analysis. Most dominant species was Diplonychus esakii collected at the site of the water edge and its dominance index was 0.797. This area had lower species diversity indices with the value of 0.340 to 1.712 than that of the grassland and water stream. The number of the species in this area was not rich. Some ground beetles inhabited at the flooded or wet area were important species for the pair group between the sites by the cluster analysis. The composition of the insect species at this natural wetland affected by the irregular flood was very simple and specific.

  • PDF

Ultrastructural Change of Osmoregulatory Cells during Seawater Adaptation in Rainbow Trout (Oncorhynchus mykiss) (무지개송어의 해수순치과정에 일어나는 삼투조절세포의 미세구조)

  • Yoon, Jong-Man
    • Korean Journal of Ichthyology
    • /
    • v.12 no.2
    • /
    • pp.111-117
    • /
    • 2000
  • There were observed the histomorphological alterations such as chloride cell hyperplasia, branchial lamellar epithelial separation, the increased cellular turnover of chloride cells, glomerular shrinkage and blood congestion in rainbow trout (Oncorhynchus mykiss) during the seawater adaptation. The ultrastructure by scanning electron microscope (SEM) indicated that the gill secondary lamella of rainbow trout exposed to seawater, were characterized by rough convoluted surfaces during the adaptation. There were observed a large number of mitochondria with the elongate and well-developed cristae in chloride cells exposed to seawater by transmission electron microscope (TEM). The presence of two mitochondria- rich cell types is discussed with regard to their possible role in the hypoosmoregulatory changes which occur during seawater-adaptation. Glomerulus shrinkage and blood congestion were occurred higher in nephrons of seawater-adapted fish than those living in freshwater. Our findings demonstrated that rainbow trout tolerated moderately saline environment and the increased body weight living in seawater was relatively higher than that living in freshwater in spite of histopathological changes.

  • PDF

Study on climate change response of small island groundwater resources

  • Babu, Roshina;Park, Namsik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.182-182
    • /
    • 2017
  • Many small island nations rely on groundwater as their only other source of freshwater in addition to rainwater harvesting. The volume of groundwater resource of small island nations are further limited by their smaller surface area and specific hydrogeology. The rapid growth of population and tourism has led to increasing water demands and pollution of available groundwater resources. The predicted climate change effects pose significant threats to the already vulnerable freshwater lens of small islands in the form of rise in sea level, coastal inundation, saltwater intrusion, varied pattern of precipitation leading to droughts and storm surges. The effects of climate change are further aggravated by manmade stresses like increased pumping. Thus small island water resources are highly threatened under the effects of climate change. But due to the limited technical and financial capacity most of the small island developing states were unable to conduct detailed technical investigations on the effects of climate change on their water resources. In this study, we investigate how well small island countries are preparing for climate change. The current state of freshwater resources, impacts of predicted climate change along with adaptation and management strategies planned and implemented by small island countries are reviewed. Proper assessment and management practices can aid in sustaining the groundwater resources of small islands under climate change.

  • PDF

Genomic Analysis of a Freshwater Actinobacterium, "Candidatus Limnosphaera aquatica" Strain IMCC26207, Isolated from Lake Soyang

  • Kim, Suhyun;Kang, Ilnam;Cho, Jang-Cheon
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.4
    • /
    • pp.825-833
    • /
    • 2017
  • Strain IMCC26207 was isolated from the surface layer of Lake Soyang in Korea by the dilutionto-extinction culturing method, using a liquid medium prepared with filtered and autoclaved lake water. The strain could neither be maintained in a synthetic medium other than natural freshwater medium nor grown on solid agar plates. Phylogenetic analysis of 16S rRNA gene sequences indicated that strain IMCC26207 formed a distinct lineage in the order Acidimicrobiales of the phylum Actinobacteria. The closest relative among the previously identified bacterial taxa was "Candidatus Microthrix parvicella" with 16S rRNA gene sequence similarity of 91.7%. Here, the draft genome sequence of strain IMCC26207, a freshwater actinobacterium, is reported with the description of the genome properties and annotation summary. The draft genome consisted of 10 contigs with a total size of 3,316,799 bp and an average G+C content of 57.3%. The IMCC26207 genome was predicted to contain 2,975 protein-coding genes and 51 non-coding RNA genes, including 45 tRNA genes. Approximately 76.8% of the protein coding genes could be assigned with a specific function. Annotation of the IMCC26207 genome showed several traits of adaptation to living in oligotrophic freshwater environments, such as phosphorus-limited condition. Comparative genomic analysis revealed that the genome of strain IMCC26207 was distinct from that of "Candidatus Microthrix" strains; therefore, we propose the name "Candidatus Limnosphaera aquatica" for this bacterium.

High Plasticity of the Gut Microbiome and Muscle Metabolome of Chinese Mitten Crab (Eriocheir sinensis) in Diverse Environments

  • Chen, Xiaowen;Chen, Haihong;Liu, Qinghua;Ni, Kangda;Ding, Rui;Wang, Jun;Wang, Chenghui
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.240-249
    • /
    • 2021
  • Phenotypic plasticity is a rapid response mechanism that enables organisms to acclimate and survive in changing environments. The Chinese mitten crab (Eriocheir sinensis) survives and thrives in different and even introduced habitats, thereby indicating its high phenotypic plasticity. However, the underpinnings of the high plasticity of E. sinensis have not been comprehensively investigated. In this study, we conducted an integrated gut microbiome and muscle metabolome analysis on E. sinensis collected from three different environments, namely, an artificial pond, Yangcheng Lake, and Yangtze River, to uncover the mechanism of its high phenotypic plasticity. Our study presents three divergent gut microbiotas and muscle metabolic profiles that corresponded to the three environments. The composition and diversity of the core gut microbiota (Proteobacteria, Bacteroidetes, Tenericutes, and Firmicutes) varied among the different environments while the metabolites associated with amino acids, fatty acids, and terpene compounds displayed significantly different concentration levels. The results revealed that the gut microbiome community and muscle metabolome were significantly affected by the habitat environments. Our findings indicate the high phenotypic plasticity in terms of gut microbiome and muscle metabolome of E. sinensis when it faces environmental changes, which would also facilitate its acclimation and adaptation to diverse and even introduced environments.

Effects of Photoperiods and Body Size on the Off-season Smolt Production of Atlantic Salmon Salmo salar in a Recirculating Aquaculture System (순환여과양식시스템에서 광주기 및 어체 크기가 대서양연어(Salmo salar)의 Off-season Smolt 생산에 미치는 영향)

  • Kim, Youhee;Kim, Pyong Kih
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.6
    • /
    • pp.894-902
    • /
    • 2022
  • This study investigated the effects of photoperiod (NL 12L:12D and LL 24L:0D) and body sizes (30 g and 50 g) on parr-smolt transformation, post-smolt growth and blood properties in the off-season parr-smolt stage of Atlantic salmon reared in a recirculating aquaculture system (RAS). Potential off-season salmon smolt were reared in a freshwater RAS for 80 days and then all experimental fish were transferred to seawater. In both LL groups (LL-30 and LL-50), we recorded and increase in specific growth rate and reduction in feed conversion, although there were no significant difference in body size. The values of osmolality, and serum Na+, Cl- and cortisol concentrations in the LL groups were maintained at lower levels than in NL group fish, and LL group fish were observed to recover to the pre-seawater adaptation state more rapidly than those in the NL group. ID chips were inserted in all smolts reared in freshwater. These fish were subsequently transferred to full-strength seawater and thereafter individual growth rates were monitored for 120 days. The results indicated that compared with smolt reared under natural photoperiodic condition, 24 h lighting in freshwater contributed to enhancing post-smolt specific growth rate in seawater.

Physiological Studies on Adaptation of Tilapia(Oreochromis miloticus) in the Various Salinities II. Serum Components Levels and Electrophoretic Patterns (틸라피아의 해수순치에 관한 생리학적 연구 II. 혈청성분과 전기영동상의 변화)

  • 홍종만;박홍양
    • Korean Journal of Animal Reproduction
    • /
    • v.16 no.4
    • /
    • pp.363-376
    • /
    • 1993
  • This study was taken to examine serum components concentrations and electrophoretic patterns of female tilapia(Oreochromis niloticus) living in 0$\textperthousand$, 10$\textperthousand$, 20$\textperthousand$, and 30$\textperthousand$ salt concentrations, respectively. The results obtained in these experiments were summarized as follows. The level of albumin and total protein showed changes in each salinity, but didn't significantly(P<0.05) change in Oreochromis niloticus. The level of BUN didn't significantly(P<0.05) change. When fish were adapted from 0$\textperthousand$ to 10$\textperthousand$, 20$\textperthousand$ and 30$\textperthousand$, each calcium level in every salinity groups showed less than that of control, and didn't significantly change in 10$\textperthousand$, 20$\textperthousand$, 30$\textperthousand$ salinity. The level of calcium didn't significantly(P<0.05) change in each salinity. In 20$\textperthousand$ salinity, the level of cholesterol was at the highest peak. When fish were adapted from 0$\textperthousand$ to 10$\textperthousand$, 20$\textperthousand$ and 30$\textperthousand$, each glucose level gradually decreased. When fish were adapted from 0$\textperthousand$ to 10$\textperthousand$, 20$\textperthousand$ and 30$\textperthousand$, each glucose level gradually decreased. When fish were adapted from 0$\textperthousand$ to 10$\textperthousand$, 20$\textperthousand$ and 30$\textperthousand$. In 30$\textperthousand$ salinity, the level of alkaline phosphatase was at the highest peak. The level of serum enzyme such as SGOT and SGPT was higher in seawater-adapted group than in freshwater group. The level of phosphorus chnage significantly(P<0.05) in each salinity. Correlation coefficient between serum albumin and glucose in 0$\textperthousand$ was +0.924. Correlation coefficient between serum SGOT and SGPT of individuals in 0$\textperthousand$ was +0.917. Fraction 1 of transferrin patterns of tilapia(Oreochromis niloticus) adapted in seawater was much thicker than that of transferrin patterns of individuals adapted in freshwater. Also fraction No. a wasn't observed in some individuals adapted in freshwater. These results showed that transferrin adapted in seawater relatively increased. Slight differences, that is, showed to be observed in total iron binding capacityand iron saturatin rate between tilapia adapted in freshwater and in seawater. The increase in total iron binding capacity was attributed to a rise in transferrin pressent in the first fraction of serum protein adapted in seawater. Accordingly, the serum iron levles seemed to be related to salinity($\textperthousand$).

  • PDF

Use of Dietary Salt to Rainbow Trout (Oncorhynchus mykiss) for Increasing Seawater Adaptability (무지개송어(Onchorhynchus mykiss)의 해수 적응 능력 개선을 위한 식염사료의 적용)

  • Kim, Pyong-Kih;Kim, You-Hee;Jeon, Joong-Kyun
    • Journal of Aquaculture
    • /
    • v.18 no.2
    • /
    • pp.69-75
    • /
    • 2005
  • One 30-day feeding trial was conducted to examine the effects of dietary salt on seawater adaptability of rainbow trout (Onchorhynchus mykiss) fed three experimental diets containing 0% (control), 4% and 8% salt. The experimetal period included 30 days of feeding trial in freshwater, 3 days of the step by step seawater acclimation with-out feeding diets, and 21 more days of seawater adaptation period (not with all experimental fish) with feeding the basal diet. Growth rates from triplicate groups were determined fur 30 days of feeding trial. Blood samples were taken at the begining and at the end of feeding trial, and 3 times (on 1st, 4th and 8th day) of the seawater adaptation period. Daily survival rates of duplicate groups from three experimetal treatments were recorded for 21 days of the seawater adaptation period. Total average initial and final fish weight were $149.5{\pm}7.6\;and\;187.1{\pm}7.6g$. Feed efficiency of fish fed diets containing 4% and 8% salt were significantly better than those of fish fed the control diet. Average cumulative survival rates were 72, 80 and 88% from the control, 4% and 8% salt diets, respectively. Pulse rate per minutes decreased with dietary salt level. Serum $Na^+\;and\;Cl^-$ concentrations of fish fed 4% and 8% salt diets were significantly higher than those of fish fed the control diet (P<0.05), however, the concentrations were stabilized after 8 days of seawater adaptation. Serum cortisol, glucose, cholesterol and tryglyceride concentrations, and the osmorality of fish decreased with dietary salt level, these values were significantly lower than those of fish fed the control diet. These results indicated that the dietary supplementation of salt could have advantages for seawater adaptability of rainbow trout.

Serum Stress Responses during Seawater Acclimation in Coho Salmon, Oncorhynchus kisutch (은연어의 해수 순치에 따른 스트레스 반응의 변화)

  • Hong, Kyung-Pyo;Kim, Pyong-Kih;Jeon, Joong-Kyun;Kim, You-Hee;Park, Yong-Ju;Myoung, Jung-Goo;Kim, Jong-Man
    • Ocean and Polar Research
    • /
    • v.26 no.3
    • /
    • pp.433-438
    • /
    • 2004
  • Stress response to the seawater acclimation in coho salmon (Oncorhynchus kisutch) smolt was investigated. Salt concentration of rearing water was gradually increased for 3 days from freshwater to seawater (30 ppt salt level). The changes of serum concentrations of cortisol as a primary stress indicator, and as secondary indicators, glucose (GLC), lactate (LAC), triglyce.ide (TG), cholesterol (CHOL), sodium ion $(Na^+)$, chloride ion $(Cl^-)$ and enzyme activities (alanine aminotransferase, ALT: aspartate aminotrasferase, AST; lactate dehydrogenase, LDH) were quantified during the acclimation experiment. Among them, cortisol, LAC, TG, CHOL, ALT, AST concentrations showed rapid increase at the first exposure to the 10ppt salt level (day 1), and began to decrease to the constant values after day 2 of adaptation at 20ppt salt level. However, LDH concentration tended to decrease during the whole experimental period. $Na^+\;and\;Cl^-$ showed slight decrease at day 1, and increased to a little bit higher values after day 2 rather than those in freshwater. All the fishes started on taking a food after day 4 of seawater adaptation. From these results, to reduce osmotic shock inducible stress to fish in seawater acclimation, gradual increase of salt levels is recommended.

Molecular Cloning of Insulin-like Growth Factor-I (IGF-I) and IGF-II Genes of Marine Medaka (Oryzias dancena) and Their Expression in Response to Abrupt Transfer from Freshwater to Seawater

  • Kang, Yue-Jai;Kim, Ki-Hong
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.3
    • /
    • pp.224-230
    • /
    • 2010
  • Growth hormone (GH) is known as one of the main osmoregulators in euryhaline teleosts during seawater (SW) adaptation. Many of the physiological actions of GH are mediated through insulin-like growth factor-I (IGF-I), and the GH/IGF-I axis is associated with osmoregulation of fish during SW acclimation. However, little information is available on the response of fish IGF-II to hyperosmotic stress. Here we present the first cloned IGF-I and IGF-II cDNAs of marine medaka, Oryzias dancena, and an analysis of the molecular characteristics of the genes. The marine medaka IGF-I cDNA is 1,340 bp long with a 257-bp 5' untranslated region (UTR), a 528 bp 3' UTR, and a 555-bp open reading frame (ORF) encoding a propeptide of 184 amino acid (aa) residues. The full-length marine medaka IGF-II cDNA consists of a 639 bp ORF encoding 212 aa, a 109 bp 5' UTR, and a 416 bp 3' UTR. Homology comparison of the deduced aa sequences with other IGF-Is and IGF-IIs showed that these genes in marine medaka shared high structural homology with orthologs from other teleost as well as mammalian species, suggesting high conservation of IGFs throughout vertebrates. The IGF-I mRNA level increased following transfer of marine medaka from freshwater (FW) to SW, and the expression level was higher than that of the control group, which was maintained in FW. This significantly elevated IGF-I level was maintained throughout the experiment (14 days), suggesting that in marine medaka, IGF-I is deeply involved in the adaptation to abrupt salinity change. In contrast to IGF-I, the increased level of marine medaka IGF-II mRNA was only maintained for a short period, and quickly returned a level similar to that of the control group, suggesting that marine medaka IGF-II might be a gene that responds to acute stress or one that produces a supplemental protein to assist with the osmoregulatory function of IGF-I during an early phase of salinity change.