• Title/Summary/Keyword: Fresh State Properties

Search Result 98, Processing Time 0.022 seconds

Evaluation on the Performance of Concrete Containing Metakaolin (메타카올린 혼입 콘크리트의 성능 평가)

  • Won, Jong-Pil;Kwon, Youn-Sung;Lee, Chan-Min;Kim, Wan-Yong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.153-156
    • /
    • 2002
  • The purpose of this research was to evaluate on the properties of fresh and hardened high-performance concrete(HPC) incorporating high-reactivity metakaolin(HRM). Setting time, heat of hydration, compressive strength, resistance to chloride-ion penetration, and repeated freezing and thawing test were carried out in order to investigate the properties of fresh and hardened state concrete. The properties of the HRM concrete were also compared with those of the portland cement concrete and silica fume(SF) concrete. The laboratory test results indicate that HRM material can be used as a supplementary cementitious material to produce high-performance concrete.

  • PDF

Influence of Organic Fiber Kinds on Engineering Properties of Concrete (유기질 섬유 종류가 콘크리트의 공학적 특성에 미치는 영향)

  • Shin Hyun-Sup;Kim Kwang-Ryeon;Lee Gun-Cheol;Kim Byung-Gi;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.27-30
    • /
    • 2006
  • This study investigated influence of organic fiber type and contents on engineering properties of concrete. Test showed that increase of fiber contents decreased fluidity of fresh concrete and it was even worse in concrete adding cellulose fiber. It is decided that concrete containing more than proper level of fiber should be considered. In addition, concrete adding more fiber, nylon and cellulose, resulted in increase of air content but it was satisfied in aimed value. Bleeding capacity of concrete containing more fiber significantly declined and setting time of that was also slightly retarded. For the properties of strength, both compressive and tensile strength of fiber containing concrete were indicated at similar value to control concrete. However, it is clear that if those concrete containing fiber revised the value of increased air contents at fresh state, the strength value of that would be slightly increased.

  • PDF

Quality Characteristics of Fresh Gastrodia elata according to Different Steaming Time (증자시간에 따른 생천마의 품질특성 변화)

  • Young Eun Song;Eun Ju Kim;Hyun Ah Han;Song Yee Lee;Chang Su Kim;Min Sil Ahn
    • The Korean Journal of Food And Nutrition
    • /
    • v.37 no.1
    • /
    • pp.40-47
    • /
    • 2024
  • Gastrodia elata has been used in traditional Chinese medicine for treating headaches, dizziness, and convulsive illness for centuries. G. elata has traditionally been processed by steaming or blanching to increase the content and quality of its main ingredients. This study aimed to identify changes in physicochemical properties and active ingredients of G. elata depending on the steaming time. Data of this study could be used to develop traditional medicine and health foods. No steaming was used as a control. Steaming time was 5, 10, 20, 30, 60, or 120 min. The drying yield according to the steaming time ranged from 20.2% to 22.9%, with the lowest drying yield at 120 min. As the steaming time increased, gastrodin content increased more than that in fresh G. elatadue to inhibition of β-glucosidase enzyme activity, 4-hydroxybenzyl alcohol condensation, and parishin decomposition. Steamed G. elatadid not show higher total polyphenols, total flavonoids, or ABTS radical scavenging activities than fresh G. elata even with an increase of steaming time. The steaming time to improve the quality of G. elata may varied depending on the size of G. elata. Thus, it is important to set the steaming time taking these characteristics into consideration.

A Fundamantal Study on the Properties of Cement Mortar Using E.P-dust (EP-DUST를 사용한 시멘트 모르터의 특성에 관한 기초적 연구)

  • 조중동;한민철;조병영;장기영;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.117-120
    • /
    • 1998
  • The objective of this study is to investigate the possibility for application of E.P-dust as both admixture and fillers for aggregates under various mixproportion, replacing method and the ratios of replacement. According to the experimental results, improvement of viscosity and reducing of segregation at fresh state and gain in strength at hardened state can be achieved by applying E.P-dust. It can be considered from the results that application of E.P-dust will be more efficient as fillers for aggregates than as binder

  • PDF

Rheological control to develop a self-consolidating ECC (자기충전용 ECC를 개발하기 위한 레올로지 특성에 관한 실험)

  • Kim, Jeong-Su;Lee, Jong-Han;Kim, Yun-Yong;Kim, Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.539-540
    • /
    • 2009
  • A self-consolidating engineered cementitious composite (ECC), which exhibits tensile strain-hardening behavior in the hardened state, while maintaining self-consolidating properties in the fresh state, has been developed by employing electrosteric dispersion and stabilization.

  • PDF

Influence of Rheological Properties of Lightweight Foamed Concrete on Preventing Foam Collapse (경량 기포 콘크리트의 레올로지 특성이 소포억제에 미치는 영향)

  • Lee, Hyang-Sun;Jeon, Jong-Woon;Jo, Mujin;Kee, Seong-Hoon;Han, Dongyeop
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.304-310
    • /
    • 2018
  • The aim of the research is to provide possibility of quality controlling by rheological properties for lightweight foamed concrete. The lightweight foamed concrete achieves its low density by containing air bubbles (foam) produced during the mixing process. Therefore, containing foamed volume during setting period is critical for the securing the performance as an insulating material. In this research, regarding foam collapse during the setting period, rheolgocial properties of fresh state lightweight foamed concrete were assessed to get its relationship with volume stability, or foam stability. For the experiment regarding foaming factors including mixing time, mix design of contents for materials, rheological properties of fresh state lightweight foamed concrete were tested with its density and settling depth. Based on the settling depth with various factors, relationship with rheological properties was analyzed, and especially, close relationship of plastic viscosity and settling depth was found. Therefore, from the results of this research, it is considered to contribute on suggesting a new approach of quality controlling for lightweight foamed concrete using rheological test method.

Field test of high-performance concrete (고성능 콘크리트 현장 시험시공)

  • 신동수;노재호;박연동;권영호;한정호;조일호;백명종
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.171-176
    • /
    • 1995
  • In recent years, Hith Performance Concrete has attracted world wide attention for its workability, strength and long-term durability. A field test was conducted to confirm the properties of high performance Concrete in situconditions. This paper describes the concrete materials, mix proportions, fresh state properties, some aspects of placability and qualty control results for field test. From the result, it was found that it is possible to produce High Performance Concrete with self-compactable and high strength.

  • PDF

A Study on the Fundamental Properties of High-Strength Concrete Using Ground Granulated Blast-Furnace Slag as an Admixture (고로슬래그 분말을 혼화재로 사용한 고강도콘크리트의 기초적 성질에 대한 연구)

  • 문한영;최연왕;문대중;송용규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.30-35
    • /
    • 1995
  • This paper presents fundamental experiment for the properties of high performance concrete in its fresh and hardened state made with ground granulated blast-furnace (GGBF) slag. The result is that the effect of decreasing xoncrete temperature is to the mixing ratio of GGBF slag, but it presents disadvantage in the slump loss phase. In addition to, we know that the splitting tensile strength, compressive strength and elastic modulus of concrete mixed with high fineness GGBF slag are increased at age 28days.

  • PDF

Engineering Properties of Non Shrinkage Grouter According to Replacement Ratio of Rapidly Cooled Electric Arc Furnace Oxidizing Slag (급냉 전기로 산화슬래그 대체율에 따른 무수축 그라우터의 공학적 특성)

  • Sung, JongHyun;Sun, Jung Soo;Hong, Sung;Kim, JinMan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.318-320
    • /
    • 2013
  • The spherical bead manufactured by rapidly cooling process shows high density of 3.64g/㎤, high unit volume weight of 2.6kg/l, and high solid volume of 71%. When it applies to the grouter, it is possible to obtain even high fluidity with only a small amount. This study, focusing the grouter using a rapidly-cooled electric arc furnace oxidizing slag(RC-EAFS), deals with the properties of flow and setting time in fresh state, compressive strength and length variation at 1, 3, 7 and 28 curing day in hardened state. As the results, even though the grouter with RC-EAFS shows comparative low strength, it will be possible to development the competitive product due to the properties of increasing flow and low cost.

  • PDF

Effect of coarse aggregates and sand contents on workability and static stability of self-compacting concrete

  • Mohamed, Sahraoui;Taye, Bouziani
    • Advances in concrete construction
    • /
    • v.7 no.2
    • /
    • pp.97-105
    • /
    • 2019
  • In this paper, the workability and static stability were evaluated using a proposed test method. Workability and static stability represent a key property of self-compacting concrete (SCC) in fresh state. A number of standardized test methods were developed to assess these properties. However, no accelerated test method reliably predicts both workability and static stability of SCC. In the present work, a modified K-slump test method was developed to evaluate workability and static stability of SCC. In order to take implicit mixture variations of SCC constituents that can affect fresh SCC properties, a central composite design was adopted to highlight the effect of gravel to sand ratio (G/S), gravel 3/8 to gravel 8/15 ratio (G1/G2), water to cement ratio (W/C), marble powder to cement ratio (MP/C) and superplasticizer content (SP) on workability measured with slump and flow time (T50) tests and static stability measured with sieve stability test (Pi), segregation test index (SSI), Penetration test (Pd) and the proposed K-slump test (Km). The obtained results show that G/S ratio close to 1 and G1/G2 ratio close to 60% can be considered as optimal values to achieve a good workability while ensuring a sufficient static stability of SCC. Acceptable relationships were obtained between Slump flow, Pi, Pd and Km. Results show that the proposed K-slump test allow to assess both workability and static stability of fresh SCC mixtures.