• Title/Summary/Keyword: Fresh Ginseng

Search Result 384, Processing Time 0.025 seconds

Ginseng, the natural effectual antiviral: Protective effects of Korean Red Ginseng against viral infection

  • Im, Kyungtaek;Kim, Jisu;Min, Hyeyoung
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.309-314
    • /
    • 2016
  • Korean Red Ginseng (KRG) is a heat-processed ginseng developed by the repeated steaming and air-drying of fresh ginseng. Compared with fresh ginseng, KRG has been shown to possess greater pharmacological activities and stability because of changes that occur in its chemical constituents during the steaming process. In addition to anticancer, anti-inflammatory, and immune-modulatory activities, KRG and its purified components have also been shown to possess protective effects against microbial infections. Here, we summarize the current knowledge on the properties of KRG and its components on infections with human pathogenic viruses such as respiratory syncytial virus, rhinovirus, influenza virus, human immunodeficiency virus, human herpes virus, hepatitis virus, norovirus, rotavirus, enterovirus, and coxsackievirus. Additionally, the therapeutic potential of KRG as an antiviral and vaccine adjuvant is discussed.

Component Profile Analysis of Irradiated Korean White Ginseng Powder (방사선 조사 인삼의 성분변화에 관한 분석)

  • 한병훈;한용남
    • Journal of Ginseng Research
    • /
    • v.19 no.2
    • /
    • pp.138-143
    • /
    • 1995
  • Currently, some food materials are disinfected by $\gamma$-irradiation (using Co-60) or ethylene oxide treatment. These treatments were applied to ginseng powder and the ginseng components such as ginsenosides, polyacetylenes and phenolic acids were analyzed by HPLC to determine any compositional changes due to irradiation. No appreciable difference was observed in the HPLC pattern of ginsenosides, polyacetylenes of ginseng powder after 10 key irradiation or ethylene oxide treatment (EO $CO_2$= 3 : 7, w/wfb) from those of untreated fresh ginseng powder when they were analyzed soon after treatments. When the ginseng powders were stored at room temperature for three years after the same treatment, the HPLC patterns of polyacetylenes and phenolic acid fraction showed appreciable change from those of fresh ginseng powder, however, the HPLC patterns of three year old samples did not show any appreciable difference.

  • PDF

Internal Quality Evaluation and Age Identification of Fresh Korean Ginseng using Magnetic Resonance Imaging (자기공명영상을 이용한 수삼의 내부 품질평가 및 연근판정)

  • 임종국;김철수;이승조;김성민
    • Journal of Biosystems Engineering
    • /
    • v.28 no.2
    • /
    • pp.157-166
    • /
    • 2003
  • The purpose of this study is to characterize the internal physical properties of fresh Korean ginsengs (Panax ginseng C.A. Meyer) through a magnetic resonance imaging (MRI) technique. Current external visual inspection cannot determine internal quality of ginsengs successfully. Relaxation time constants, T$_1$ and T$_2$*, were obtained from a series of MR images. Calculated Ti values were varied with different physiological states of ginseng tissues. Internal imaging information was obtained nondestructively from fresh ginsengs. One- and two-dimensional image analyses were performed. One-dimensional image analysis showed a potential of age identification of ginsengs rapidly. Internal quality of normal and abnormal ginsengs was evaluated using two-dimensional MR images. Various types of internal defects such as internal cavity and rotten spot were visualized clearly. The MRI technique had a feasibility to detect internal defects of fresh ginsengs effectively.

Present and Future on the Processing of Ginseng (인삼의 가공현황과 전망)

  • 성현순
    • Journal of Ginseng Research
    • /
    • v.10 no.2
    • /
    • pp.218-232
    • /
    • 1986
  • In this review quality improvement, new products and processing of ginseng are discussed. Ginseng products are generally classified into two types; the dried product without significant change in original shape of fresh ginseng and various processed ginseng products in liquid or solid types prepared by addition of either ginseng extract of ground powder. The dried ginsengs are generally made 4 years old fresh ginseng roots for production of white ginseng and 6 years old ones for red ginseng. The processed ginseng products, such as ginseng drinks, extracts, teas, powders, capsules or tablets are prepared by addition of extract or powder of the ginseng roots which contain relatively high amount of saponin. At present, more than 200 items of 40 types of products are commercially available in over 70 countries in the world, Since consummers preference on the quality of ginseng products as an health food differs with their cultural background of each country, new products development and quality improvement should be investigated with concerning the particular preference of the consummers of various country. It has been generally found that the Orientals has higher product acceptance on strong ginseng flavor while the Westerners generally prefers the products having mild ginseng odor and taste. Recently consummers are asking for supplemented type of ginseng products with various medical herbs and vital materials instead of ginseng alone. Therefore future work on product development should be emphasized to meet the consummers demand and preference.

  • PDF

A Study on the Analysis of Amino Acids in Korean Ginseng (韓國人蔘의 年根別 및 貯藏期間別 아미노酸分析)

  • Rhee, Seong-Hong;Zong, Moon-Shik
    • Journal of Environmental Health Sciences
    • /
    • v.9 no.2
    • /
    • pp.37-53
    • /
    • 1983
  • The contents of amino acids were examined in the 3, 4, 5, and 6 year-old roots of fresh ginseng and the 1979, 1980, 1981, and 1982 years' products of white and red ginsengs. Samples extracted with 75% ethanol for free amino acids and hydrolyzed with 6N-HCL for total amino acids were analyzed by Amino Acid Analyzer (Hitachi model KLA-5). The results were summarized as follows: 1. Amino acids from extracted samples were 18 kinds of Tryptophan, Lysine, Histidine, Arginine, Aspartic acid, Threonine, Serine, Glutamic acid, Proline, Glycine, Alanine, Cystine, Valine, Methionine, Isoleucine, Leucine, Tyrosine, and Phenylalanine. 2. Amino acids detected in hydrolyzed samples were 17 kinds execpt Tryptophan of extracted ones. 3. Arginine was the highest quantity of amino acids in ginseng. 4. The content of Tryptophan was 0.5690 mg/g in the 6 year-old fresh ginseng and trace quantities in other samples. 5. The contents of amino acids were increased in fresh ginseng according to cultivation year. 6. The contents of amino acids in white ginseng were slightly decreased but those in red ginseng were not changed during the storage time. 7. The content ratio of free amino acids to total amino acids were 1:3.

  • PDF

Physico-Chemical and Microbiological Changes during Storage of Fresh Ginseng (수삼저장중 이화학적 및 기생물학적 변화)

  • 오훈일;노해원;도재호;김상달;홍순근
    • Journal of Ginseng Research
    • /
    • v.5 no.2
    • /
    • pp.99-107
    • /
    • 1981
  • Physical, chemical and microbiological changes were periodically studied during six-month storage of fresh ginseng under N2, CO2 gas or subatmospheric pressure condition. The results were summarized as follows. 1. The moisture contents of fresh ginseng gradually decreased during the first 2-month storage and thereafter generally reached at equillibrium. 2. There was no significant change in the reducing sugar content in 1-month storage, followed by$.$a decrease in between 2-and 3-month storage. Thereafter, the reducing sugar content increased at the end of 4-month storage. 3. The total sugar content increased significantly during the first 3-month storage. Under CO2 and Nr gas storage, the total sugar content gradually decreased after 3-month storage, while no significant change was observed in the samples stored under subatmospheric Pressure. Amylase activity gradually decreased as storage period increased 4. The content of saponin decreased as storage period increased, but ginsengoide Rf, Rd, Rc and Rb2 increased significantly in 1-month storage. 5. Regardless of storage methods, sprouting of ginseng and growth of microorganisms were inhibited in all samples during the first 4-month storage. However, growth of microorganisms was observed in the rhizome and injured areas of ginseng after 5-month storage in the N2 and CO2 gas atmosphere.

  • PDF

Changes in Free Amino Acids and Sugars in Water-soluble Extracts of Fresh Ginseng during Browning Reaction (수삼물추출물의 갈변반응중 아미노산과 당류변화)

  • 김만욱;박래정
    • Journal of Ginseng Research
    • /
    • v.5 no.2
    • /
    • pp.122-131
    • /
    • 1981
  • An aqueous extract s of fresh ginseng roots was heated at loot for 64 hrs. and the changes of color intensity, pH and the amount of free sugars and amino acids during the various intervals of the heating time were investigated. Color intensity and absorbance of the solution at 490nm were increased in proportion to the length of the heating time. Most of brown pigments produced during the treatment were water soluble, and pH 5.1 at initial stage of the solution, was slightly decreased at the final stages of the reaction. Sucrose, glucose and fructose were major free sugars in ginseng roots, and the amounts of sucrose was over 90 % of total free sugars. Sucrose. was largely decreased approximately 50%, by 64 hrs of the treatment, whereas sharp increase in the amount of glucose and fructose was observed during the reaction in the solution. The observed increase in reducing sugars, glucose and fructose was presumed due to hydrolysis of sucrose. Evidently, glucose and fructose were not important factor to control the browning reaction of the solution. Most of free amino acids and peptides except alanine and isoleucine especially arginine, serine and threonine, were sharply decreased up to 40 : 50% of the original concentration within 2 hrs. Accordingly, the content of free amino acids and peptides seems to be extremely important factor to control the browning reaction in ginseng. A free amino acid, presumed to be nor-leucine, was found in fresh ginseng root on the basis of re mention on liquid chromatography. Kinetic analysis of the browning reaction indicated a pseudo second order with respect to amino acid concentration at the initial stage.

  • PDF

Investigation of Different Factors Affecting the Electron Spin Resomance-based Characterization of Gamma-irradiated Fresh, White, and Red Ginseng

  • Ahn, Jae-Jun;Akram, Kashif;Jo, Deok-Jo;Kwon, Joong-Ho
    • Journal of Ginseng Research
    • /
    • v.36 no.3
    • /
    • pp.308-313
    • /
    • 2012
  • Fresh (raw roots), white (dried), and red (steamed-drid) ginseng samples were gamma-irradiated at 0 to 7 kGy. Electron spin resonance (ESR) technique was used to characterize the irradiation status of the samples, targeting the radiation-induced cellulose radicals after different sample pretreatments. All non-irradiated samples exhibited a single central signal (g=2.006), whose intensity showed significant increase upon irradiation. The ESR spectra from the radiation-induced cellulose radicals, with two side peaks (g=2.0201 and g=1.9851) equally spaced (${\pm}3mT$) from the central signal, were also observed in the irradiated samples. The core sample analyzed after alcoholic-extraction produced the best results for irradiated fresh ginseng samples. In the case of irradiated white and red ginseng samples, the central (natural) and radiation-induced (two-side peaks corresponding to cellulose radical) signal intensities showed little improvement on alcoholic-extraction. The water-washing step minimized the effect of $Mn^{2+}$, but reduced the intensity of side peaks making them difficult to indentify. The effect of different origins was negligible, however harvesting year showed a clear effect on radiation-induced ESR signals.

Volatile Constituents by Treatment of Artificial Saliva in Fresh Ginseng Root (인공타액처리에 의한 수삼의 향기성분 변화 분석)

  • In, Jun-Gyo;Kwon, Woo-Sup;Min, Jin-Woo;Lee, Bum-Soo;Kim, Eun-Jeong;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.32 no.4
    • /
    • pp.305-310
    • /
    • 2008
  • The volatile constituents of the fresh roots of Panax ginseng C.A. Meyer have been investigated after treatment with artificial saliva and analysed by gas chromatography-mass spectrometry (GC-MS) using solid phase microextraction (SPME) fiber. Twenty peaks were detected in fresh ginseng, 5 of them were unknown peak, and mainly hydrocarbon components (${\alpha}$-pinene, ${\beta}$-pinene, myrcene, limonene, ${\beta}$-panasinsene, ${\beta}$-elemene, ${\beta}$-gurjunene, trans-caryophyllene, ${\alpha}$-gurjunene, ${\alpha}$-panasinsene, ${\alpha}$-neoclovene, trans-${\beta}$-farnasene, ${\alpha}$-humulene, ${\beta}$-neoclovene, ${\alpha}$-selinene, ${\beta}$-selinene, bicyclogermacrene) were detected. It's area percentage was increased about 10% in the fresh ginseng added artificial saliva during 40 minutes.

Processing factors of azoxystrobin in processed ginseng products (인삼 가공품 중 azoxystrobin의 가공계수)

  • Lee, Jae-Yun;Noh, Hyun-Ho;Lee, Kwang-Hun;Park, Hyo-Kyoung;Oh, Jae-Ho;Im, Moo-Hyeog;Kwon, Chan-Hyeok;Lee, Joong-Keun;Woo, Hee-Dong;Kwon, Ki-Sung;Kyung, Kee-Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.3
    • /
    • pp.222-229
    • /
    • 2012
  • This study was carried out to evaluate the residual characteristics of azoxystrobin in fresh ginseng and calculate its processing factors in processed products, such as dried ginseng, red ginseng and their extracts. Azoxystrobin was sprayed annually onto four-year-old ginseng according to its pre-harvest interval (PHI) for two years. Harvested ginsengs were processed according to the commercially well-qualified conventional methods provided by the Korea Ginseng Corporation. Limits of detection (LODs) of azoxystrobin in fresh ginseng and its processed products were 0.001 and 0.002 mg/kg, respectively. Also limits of quantitation (LOQs) in fresh ginseng and its processed products were 0.003 and 0.007 mg/kg, respectively. Recoveries of the analytical methods in fresh ginseng and its processed products ranged from 69.3 to 114.8%. Highest residue amounts in fresh ginseng and its processed products were 0.025 and 0.118 mg/kg, respectively. Processing factors of the processed products ranged from 1.85 to 3.17 in four-year-old ginseng and from 2.48 to 5.84 five-year-old ginseng.