• Title/Summary/Keyword: Frequency-dependent Impedance

Search Result 113, Processing Time 0.034 seconds

Frequency Dependent Properties of Tris(8-Hydroxyquinoline) Aluminum Thin Films

  • Lee, Yong-Soo;Park, Jae-Hoon;Choi, Jong-Sun
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.3
    • /
    • pp.70-74
    • /
    • 2001
  • Admittance or impedance spectroscopy is one of the powerful tools to study dielectric relaxation and loss processes in organic and inorganic materials. In this study, the frequency dependent properties of an indium tin oxide/tris(8-hydroxyquinoline) aluminum($Alq_3$)/aluminum structure have been studied. The conductance of the $Alq_3$ film increases with the DC applied voltage up to 4V and decreases above 4V in the low frequency region. This indicates that the resistance of the device decreases with the applied bias due to the carrier injection enhancement, thereafter the injected carriers form the space charge and the additional injection of carriers is prevented. The Cole-Cole plot of the admittance takes a one-semicircle shape, which means that the device can be modeled as a parallel resistor-capacitor network. The resistance and capacitance were estimated as 8.62k${\Omega}$ and 2.7nF, respectively, at 3V in the low frequency region. The dielectric constant ( ${\epsilon}'$ ) of the $Alq_3$ film is independent of the frequency in the low frequency region below 100kHz, while the frequency dependency was observed at above 100kHz. The dielectric loss factor ( ${\epsilon}"$ ) of the $Alq_3$ film shows the dielectric dispersion below 100kHz and dielectric absorption in higher frequency domain. The dispersion is thought to be related to the hopping process of the carriers. The ${\epsilon}"$ is proportional to the reciprocal of the frequency. The dielectric relaxation time was extracted to about 0.318${\mu}s$ from the dielectric absorption spectrum.

  • PDF

Analysis of Symmetric Coupled Line with Crossbar Embedded Structure for Improved Attenuation Characteristics on the Various Lossy Media (다양한 매질내의 손실특성 개선을 위한 크로스바 구조의 대칭 결합선로에 대한 해석)

  • Kim, Yoon-Suk
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.8
    • /
    • pp.61-67
    • /
    • 2010
  • A characterization procedure for analyzing symmetric coupled MIS(Metal-Insulator-Semiconductor) transmission line is used the same procedure as a general single layer symmetric coupled line with perfect dielectric substrate from the extraction of the characteristic impedance and propagation constant for even- and odd-mode. In this paper, an analysis for a new substrate shielding symmetric coupled MIS structure consisting of grounded crossbar at the interface between Si and SiO2 layer using the Finite-Difference Time-Domain (FDTD) method is presented. In order to reduce the substrate effects on the transmission line characteristics, a shielding structure consisting of grounded crossbar lines over time-domain signal has been examined. Symmetric coupled MIS transmission line parameters for even- and odd-mode are investigated as the functions of frequency, and the extracted distributed frequency-dependent transmission line parameters and corresponding equivalent circuit parameters as well as quality factor for the new MIS crossbar embedded structure are also presented. It is shown that the quality factor of the symmetric coupled transmission line can be improved without significant change in the characteristic impedance and effective dielectric constant.

Seismic attributes for characterization of a heavy-oil shaly-sand reservoir in the Muglad Basin of South Sudan

  • Deng, William A.;Kim, Taeyoun;Jang, Seonghyung
    • Geosciences Journal
    • /
    • v.22 no.6
    • /
    • pp.1027-1039
    • /
    • 2018
  • Seismic attributes are often used to identify lithology and evaluate reservoir properties. However, interpretation based only on structural attributes and without knowledge of the Vp/Vs ratio can limit the ability to evaluate changes in heavy oil reservoirs. These limitations are often due to less obvious impedance differences. In order to investigate pieces of evidence of a heavy-oil shaly-sand reservoir from seismic data, besides geochemistry, we studied seismic attributes and characterized the reservoir using seismic stack data and well logging data. The study area was the Muglad rift basin in South Sudan. We conducted a seismic complex analysis to evaluate the target reservoir. To delineate the frequency responses of the different lithological units, we applied the spectral decomposition method to the target reservoir. The most unexpected result was continuous bands of strong seismic reflectors in the target reservoir, which extended across the borehole. Spectral decomposition analysis showed that the low-frequency zone of 25 Hz dominant frequency was consistent with instantaneous attributes. This approach can identify lithology, reveal frequency anomalies, and filter the stacked section into low- and high-frequency bands. The heavy-oil reservoir zones exhibited velocity attenuation and the amplitude was strongly frequency dependent.

Two-dimensional energy transmitting boundary in the time domain

  • Nakamura, Naohiro
    • Earthquakes and Structures
    • /
    • v.3 no.2
    • /
    • pp.97-115
    • /
    • 2012
  • The energy-transmitting boundary, which is used in the well-known finite element method (FEM) program FLUSH, is quite efficient for the earthquake response analysis of buildings considering soil-structure interaction. However, it is applicable only in the frequency domain. The author proposed methods for transforming frequency dependent impedance into the time domain, and studied the time domain transform of the boundary. In this paper, first, the estimation methods for both the halfspace condition under the bottom of the soil model and the pseudo three-dimensional effect were studied with the time domain transmitting boundary. Next, response behavior when using the boundary was studied in detail using a practical soil and building model. The response accuracy was compared with those using viscous boundary, and the boundary that considers the excavation force. Through these studies, the accuracy and efficiency of the proposed time domain transmitting boundary were confirmed.

Dielectric and Electrical Characteristics of Lead-Free Complex Electronic Material: Ba0.8Ca0.2(Ti0.8Zr0.1Ce0.1)O3

  • Sahu, Manisha;Hajra, Sugato;Choudhary, Ram Naresh Prasad
    • Korean Journal of Materials Research
    • /
    • v.29 no.8
    • /
    • pp.469-476
    • /
    • 2019
  • A lead-free bulk ceramic having a chemical formula $Ba_{0.8}Ca_{0.2}(Ti_{0.8}Zr_{0.1}Ce_{0.1})O_3$ (further termed as BCTZCO) is synthesized using mixed oxide route. The structural, dielectric, impedance, and conductivity properties, as well as the modulus of the synthesized sample are discussed in the present work. Analysis of X-ray diffraction data obtained at room temperature reveals the existence of some impurity phases. The natural surface morphology shows close packing of grains with few voids. Attempts have been made to study the (a) effect of microstructures containing grains, grain boundaries, and electrodes on impedance and capacitive characteristics, (b) relationship between properties and crystal structure, and (c) nature of the relaxation mechanism of the prepared samples. The relationship between the structure and physical properties is established. The frequency and temperature dependence of the dielectric properties reveal that this complex system has a high dielectric constant and low tangent loss. An analysis of impedance and related parameters illuminates the contributions of grains. The activation energy is determined for only the high temperature region in the temperature dependent AC conductivity graph. Deviation from the Debye behavior is seen in the Nyquist plot at different temperatures. The relaxation mechanism and the electrical transport properties in the sample are investigated with the help of various spectroscopic (i.e., dielectric, modulus, and impedance) techniques. This lead free sample will serve as a base for device engineering.

Power Integrity and Shielding Effectiveness Modeling of Grid Structured Interconnects on PCBs

  • Kwak, Sang-Keun;Jo, Young-Sic;Jo, Jeong-Min;Kim, So-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.3
    • /
    • pp.320-330
    • /
    • 2012
  • In this paper, we investigate the power integrity of grid structures for power and ground distribution on printed circuit board (PCB). We propose the 2D transmission line method (TLM)-based model for efficient frequency-dependent impedance characterization and PCB-package-integrated circuit (IC) co-simulation. The model includes an equivalent circuit model of fringing capacitance and probing ports. The accuracy of the proposed grid model is verified with test structure measurements and 3D electromagnetic (EM) simulations. If the grid structures replace the plane structures in PCBs, they should provide effective shielding of the electromagnetic interference in mobile systems. An analytical model to predict the shielding effectiveness (SE) of the grid structures is proposed and verified with EM simulations.

AC-Based Characterization of Quantum-Dot Light-Emitting Diodes

  • Hwang, Hee-Soo;Lee, Ki-Hun;Park, Chan-Rok;Yang, Heesun;Hwang, Jinha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.466-466
    • /
    • 2013
  • Quantum-dot materials have introduced novel applications in organic light-emitting diodes and solar cells. The size controllability and structure modifications have continuously been upgrading the applicability to optoelectronic and flat-panel displays. In particular, quantum-dot organic light-emitting diodes (QLEDs) are a device driven through the electrical field applied to the electrical diodes. The QLEDs are affected by the constituent materials and the corresponding device structures. Conventionally, the electrical properties are characterized only in terms of dc-based current-voltage characteristics. The dynamic change in light-emitting diodes should be characterized in emitted and non-emitted states. Therefore, the frequency-dependent impedance can offer different information on the electrical performance in QLED. The current work reports an auxiliary information on the electrical and optical features originating from quantum-dot organic light-emitting diodes. The empirical characterizations are discussed towards an experimental tool in optimizing the light-emitting diodes.

  • PDF

Impedance Spectroscopy Analysis on the LaAlO3/SrxCa1-xTiO3/SrTiO3 Hetero-Oxide Interface System

  • Park, Da-Hee;Kwon, Kyoung-Woo;Park, Chan-Rok;Choi, Yoo-Jin;Bae, Seung-Muk;Baek, Senug-Hyub;Kim, Jin-Sang;Hwang, Jin-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.188.2-188.2
    • /
    • 2015
  • The presence of the conduction interface in epitaxial $LaAlO_3/SrTiO_3$ thin films has opened up challenging applications which can be expanded to next-generation nano-electronics. The metallic conduction path is associated with two adjacent insulating materials. Such device structure is applicable to frequency-dependent impedance spectroscopy. Impedance spectroscopy allows for simultaneous measurement of resistivity and dielectric constants, systematic identification of the underlying electrical origins, and the estimation of the electrical homogeneity in the corresponding electrical origins. Such unique capability is combined with the intentional control on the interface composition composed of $SrTiO_3$ and $CaTiO_3$, which can be denoted by $SrxCa1-_xTiO_3$. The underlying $Sr_xCa1-_xTiO_3$ interface was deposited using pulsed-laser deposition, followed by the epitaxial $LaAlO_3$ thin films. The platinum electrodes were constructed using metal shadow masks, in order to accommodate 2-point electrode configuration. Impedance spectroscopy was performed as the function of the relative ratio of Sr to Ca. The respective impedance spectra were analyzed in terms of the equivalent circuit models. Furthermore, the impedance spectra were monitored as a function of temperature. The ac-based characterization in the 2-dimensional conduction path supplements the dc-based electrical analysis. The artificial manipulation of the interface composition will be discussed towards the electrical application of 2-dimensional materials to the semiconductor devices in replacement for the current Si-based devices.

  • PDF

An Accurate Modeling Approach to Compute Noise Transfer Gain in Complex Low Power Plane Geometries of Power Converters

  • Nguyen, Tung Ngoc;Blanchette, Handy Fortin;Wang, Ruxi
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.411-421
    • /
    • 2017
  • An approach based on a 2D lumped model is presented to quantify the voltage transfer gain (VTG) in power converter low power planes. The advantage of the modeling approach is the ease with which typical noise reduction devices such as decoupling capacitors or ferrite beads can be integrated into the model. This feature is enforced by a new modular approach based on effective matrix partitioning, which is presented in the paper. This partitioning is used to decouple power plane equations from external device impedance, which avoids the need for rewriting of a whole set of equation at every change. The model is quickly solved in the frequency domain, which is well suited for an automated layout optimization algorithm. Using frequency domain modeling also allows the integration of frequency-dependent devices such inductors and capacitors, which are required for realistic computation results. In order to check the precision of the modeling approach, VTGs for several layout configurations are computed and compared with experimental measurements based on scattering parameters.

Improvement of Attenuation Characteristics for Multiple Coupled Line Structure on the Specific Lossy Media (특정 손실 매질위의 다중 결합선로에 대한 손실특성 개선)

  • Kim, Yoon-Suk;Kim, Min-Su
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.12
    • /
    • pp.35-41
    • /
    • 2011
  • In this paper, an analysis for a new substrate shielding symmetric coupled MIS structure consisting of grounded crossbar at the interface between Si and SiO2 layer using the Finite-Difference Time-Domain(FDTD) method is presented. In order to reduce the substrate effects on the transmission line characteristics, a shielding structure consisting of grounded crossbar lines over time-domain signal has been examined. Parameters of symmetric coupled MIS transmission line with various gaps between crossbars for even- and odd-mode are investigated as the functions of frequency, and the extracted distributed frequency-dependent transmission line parameters and corresponding equivalent circuit parameters as well as quality factor for the new MIS crossbar embedded structure are also presented. It is shown that the quality factor of the symmetric coupled transmission line can be improved without significant change in the characteristic impedance and effective dielectric constant.