• 제목/요약/키워드: Frequency response Function

검색결과 1,050건 처리시간 0.025초

둔턱 진행 차량의 주파수응답 분석 (FRF Analysis of a Vehicle Passing the Bump Barrier)

  • 김종도;윤문철
    • 융합정보논문지
    • /
    • 제12권3호
    • /
    • pp.151-157
    • /
    • 2022
  • 차량의 진행을 근사화한 외부 가진력을 고려한 강제 진동에서의 주파수 특성을 알아보고자 하였고, 다양한 가진 진폭과 주파수를 갖는 외력이 작용하면서 차량이 둔턱을 넘어갈 때에 차량에서 일어나는 주파수 영역의 진동특성을 분석하였다. 응답은 수치해석을 통하여 변위, 속도 및 가속도 등의 응답을 구하였고 이들을 FFT 처리하여 각 시간 응답의 FRF(Frequency response function) 주파수 특성을 분석하였다. 특히, 차량 고유모드와 외부 가진 모드의 발생 위치를 확실하게 비교하여 밝혔고 외부 가진력에 의한 강제진동 모델에서 변위, 속도 및 가속도의 거동과 주파수 응답함수에서의 고유모드의 위치와 주변의 가진 모드 분포 및 파워 스펙트럼, 실수부와 허수부의 FRF도 나타났으며 각 FRF에서 근접 모드 특성도 분석하였다. 외부 가진력으로 정현파의 가진력과 임펄스 가진력에 의한 둔턱 주파수를 고려하여 가정한 근사 모델에서 발생 모드를 구별할 수 있었다. 상당하는 질량, 감쇠 및 강성을 변화하는 여러 시스템에서 강제진동의 응답특성을 체계적으로 다루었다.

사인-스윕 가진 모델을 통한 가스터빈 연소기의 음향 동적 반응 해석 (Acoustical Dynamic Response Analysis of a Gas Turbine Combustor Using a Sine-Sweep Forcing Model)

  • 손주찬;김대식
    • 한국추진공학회지
    • /
    • 제26권4호
    • /
    • pp.1-9
    • /
    • 2022
  • 본 연구에서는 외부 음향장 가진에 따른 시스템의 동적 응답 특성을 파악하기 위하여 기존의 네트워크 모델에 스피커를 통한 외부 사인-스윕 가진 기능을 추가한 수치해석적 모델이 개발되었다. 본 모델을 통하여 대상 연소기의 물리적 치수 및 경계조건과 같은 시스템 매개변수에 따른 주파수 및 압력 진폭 변화의 민감도를 넓은 주파수 영역에서 분석하였다. 대상 연소기의 가진 응답 특성 분석 결과, 높은 동압 반응을 보이는 주파수 영역은 동일 연소기에서 계측된 불안정 범위와 유사하였으며, 특히 음향 가진 소스항의 위치에 따라 시스템의 반응이 크게 의존하는 것으로 나타났다.

A study of wind effect on damping and frequency of a long span cable-stayed bridge from rational function approximation of self-excited forces

  • Mishra, Shambhu Sharan;Kumar, Krishen;Krishna, Prem
    • Wind and Structures
    • /
    • 제10권3호
    • /
    • pp.215-232
    • /
    • 2007
  • This paper presents an aeroelastic analysis procedure to highlight the influence of wind velocity on the structural damping and frequency of a long span cable-stayed bridge. Frequency dependent self-excited forces in terms of flutter derivatives are expressed as continuous functions using rational function approximation technique. The aeroelastically modified structural equation of motion is expressed in terms of frequency independent modal state-space parameters. The modal logarithmic dampings and frequencies corresponding to a particular wind speed are then determined from the eigen solution of the state matrix.

완전최소자승법을 이용한 QFT의 주파수 전달함수 합성법 (A Frequency Transfer Function Synthesis of QFT Using Total Least Squares Method)

  • 김주식;이상혁
    • 제어로봇시스템학회논문지
    • /
    • 제8권8호
    • /
    • pp.649-654
    • /
    • 2002
  • The essential philosophy of the QFT(Quantitative Feedback Theory) is that a suitable controller can be found by loop shaping a nominal loop transfer function such that the frequency response of this function does not violate the QFT bounds. The loop shaping synthesis involves the identification of a structure and its specialization by means of the parameter optimization. This paper presents an optimization algorithm to estimate the controller parameters from the frequency transfer function synthesis using the TLS(Total Least Squares) in the QFT loop shaping procedure. The proposed method identifies the parameter vector of the robust controller from an overdetermined linear system developed from rearranging the two dimensional system matrices and output vectors obtained from the QFT bounds. The feasibility of the suggested algorithm is illustrated with an example.

방향성 주파수 응답 함수를 이용한 일반 회전체의 비대칭성 규명 (Identification of Asymmetry in General Rotors from Directional Frequency Response Functions)

  • 서윤호;강성우;이종원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.941-944
    • /
    • 2005
  • Asymmetry of rotor systems is an important factor for identification of dynamic characteristics including the stability and response of rotors and for condition monitoring. In this work, asymmetry of rotors is identified by applying curve-fitting method to the directional frequency response functions (dFRFs), which are known as a powerful tool for detecting the presence and degree of asymmetry. This method minimizes least square error between analytical and measured dFRFs by iteratively updating physical parameters associated with rotor asymmetry. The effectiveness of the identification method is demonstrated by experiments with a laboratory test rotor.

  • PDF

내재민감도 함수를 이용한 단열타일의 손상 탐지 기법 (Structural Damage Detection for Metal Panel Using Embedded Sensitivity Functions)

  • 양철호;더글러스 아담스
    • 한국소음진동공학회논문집
    • /
    • 제15권6호
    • /
    • pp.697-705
    • /
    • 2005
  • Vibration-based damage identification method using embedded sensitivity functions is discussed. The theory of embedded sensitivity functions is reviewed and applied to identify damage in a three degree-of-freedom system and a metallic panel. Embedded sensitivity functions are algebraic combinations of measured frequency response functions that reflect changes in the response of mechanical systems when mass, damping or stiffness parameters are changed. By comparing the embedded sensitivity functions with finite difference functions using undamaged and damaged frequency response functions, damage is shown to be properly detected, located and quantified in theory and practice assuming that structures of interest are only damaged in one location. Simulated and experimental results indicate that the technique is most effective when changes to frequency response functions are small to avoid distorsions in the estimated perturbations due to variations in the sensitivity functions.

Stationary random response analysis of linear fuzzy truss

  • Ma, J.;Chen, J.J.;Gao, W.;Zhao, Y.Y.
    • Structural Engineering and Mechanics
    • /
    • 제22권4호
    • /
    • pp.469-481
    • /
    • 2006
  • A new method called fuzzy factor method for the stationary stochastic response analysis of fuzzy truss with global fuzzy structural parameters is presented in this paper. Considering the fuzziness of the structural physical parameters and geometric dimensions simultaneously, the fuzzy correlation function matrix of structural displacement response in time domain is derived by using the fuzzy factor method and the optimization method, the fuzzy mean square values of the structural displacement and stress response in the frequency domain are then developed with the fuzzy factor method. The influences of the fuzziness of structural parameters on the fuzziness of mean square values of the displacement and stress response are inspected via an example and some important conclusions are obtained. Finally, the example is simulated by Monte-Carlo method and the results of the two methods are close, which verified the feasibility of the method given in this paper.

직경이 작은 유압관로에서의 동특성 (Dynamic Respeonse of Hydraulic Pipe Lines with a Relative Small Diameter)

  • 유영태
    • 한국생산제조학회지
    • /
    • 제8권4호
    • /
    • pp.38-44
    • /
    • 1999
  • This paper primarily directed toward analyzing the frequency response in hydraulic pipe lines with a small diameter. The exact solution to the frequency response is obtained by using the complicated transfer function. The discrepancy with the exact and the approximate is small so the approximation solution is adopted to compare the experimental results with the theoretical analysis. In this experiment the input frequency was generated by the frequency generator with the ball valve and speed controller. In order to compare the theoretical were forms with the experimental ones the trace obtained from the oscilloscope is photographed, The diameter the length of lines and input pressure amplitude are varied to investigate their effects,. the experiment results show that th values of dimensionless parameter are very affected to the phase delay and guide response time in the design of pressure manifold to measure the pressure of hydraulic pipelines.

  • PDF

비선형 진동절연 시스템의 근사적 응답을 구하는 방법 (Methods to Obtain Approximate Responses of a Non-Linear Vibration Isolation System)

  • 이건명
    • 한국기계가공학회지
    • /
    • 제19권6호
    • /
    • pp.23-28
    • /
    • 2020
  • A non-linear vibration isolation system composed of a non-linear spring and a linear damper was presented in a previous study. The advantage of the proposed isolator is the simple structure of the system. When the base of the isolator is harmonically excited, the response component of the mass at the excitation frequency was approximated using three different methods: linear approximation, harmonic balance, and higher-order frequency response functions (FRFs). The method using higher-order FRFs produces significantly more accurate results compared with the other methods. The error between the exact and approximate responses does not increase monotonously with the excitation amplitude and is less than 2%.

VIBRATION PROPERTIES OF PEARS

  • Kim, M. S.;H. M. Jung;Park, I. K.;Park, J. M.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.III
    • /
    • pp.533-542
    • /
    • 2000
  • Instrumentation and technologies are described for determining the vibration response characteristics of the pear with frequency range 5 to 320Hz. The computer program for controlling the vibration exciter and the function generator and for measuring the vibration response characteristics of the pear was developed. Mechanical properties such bioyield deformation, rupture deformation and apparent elastic modulus etc. were compared with the vibration response characteristics of the pear. The resonant frequency of the pear ranged from 53 to 102Hz and the amplitude at resonance was between 1.08 and 2.48g-rms. The resonant frequency and amplitude at resonance decreased with the increase of the sample mass, and they were slightly affected by mechanical properties such as bioyield deformation and rupture deformation. Regression analysis was performed among the relatively high correlated parameters from the results of correlation coefficient analysis.

  • PDF