• Title/Summary/Keyword: Frequency of Wind

Search Result 1,156, Processing Time 0.026 seconds

A Survey on the Stable Vice of Race Horse in Stable (경주마의 마사내에서의 악벽에 관한 조사연구)

  • Yoon, Sei-Young;Kim, Myeong-Hwa;Lee, Sang-Rak
    • Journal of Animal Science and Technology
    • /
    • v.50 no.6
    • /
    • pp.857-864
    • /
    • 2008
  • This study was conducted to identify various habits of stable vices and its occurring frequency in racing horses, currently managed in Korea, through categorizing the total 1,386 head of racing horses in Seoul Racing Park into sex, age and years of stabling. Among the 1,386 horses, 524 heads(37.8%) have shown habits of stable vices and its appearances rate according to each category is as following; While 40.7% of stallions showed the highest appearances rate of stable vices by sex, it was 50%, 44.2%, and 53% for the age of 2, 6 and 4, respectively by age, it was 41%, 40.6% and 39.1% for the years of stabling of 2, 4 and 3, respectively. For the appearances rate of individual stable vices, 7.0% of mares showed the highest appearances rate of ‘kicking at walls’, 12.9% of stallions showed ‘biting habit’ and 5.7% of castrated horses showed ‘weaving’ when grouped by sex. According to age, 8.3%, and 6.1% of horses of age 2 showed ‘kicking at walls’, ‘wind-sucking’ and ‘pawing’, respectively while 4.9% of horses of age 3 showed ‘pawing’, 6.4% of horses of age 4 showed ‘kicking at walls’, 6.8% of horses of age 5 showed ‘kicking at walls’ and ‘biting habit’ and 8.7% of horses of age 6 showed ‘weaving’ and ‘biting habit’. By the year of stabling, 6% of horses for 1 year had ‘pawing habit’, 7% og horses for 2 years had ‘kicking at walls’, 7.4% of horses for 3 years had ‘biting habit’ and it was 6.9% and 10.6% for ‘weaving’ for 4 and 5 years of stabling, respectively. In conclusion, the racing horses in Korea seemed to show high rate of appearance rate of stable vices and it is considered to be necessary to improve stable equipments and management skills to reduce the appearance rate of stable vices.

Detection of flash drought using evaporative stress index in South Korea (증발스트레스지수를 활용한 국내 돌발가뭄 감지)

  • Lee, Hee-Jin;Nam, Won-Ho;Yoon, Dong-Hyun;Mark, D. Svoboda;Brian, D. Wardlow
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.8
    • /
    • pp.577-587
    • /
    • 2021
  • Drought is generally considered to be a natural disaster caused by accumulated water shortages over a long period of time, taking months or years and slowly occurring. However, climate change has led to rapid changes in weather and environmental factors that directly affect agriculture, and extreme weather conditions have led to an increase in the frequency of rapidly developing droughts within weeks to months. This phenomenon is defined as 'Flash Drought', which is caused by an increase in surface temperature over a relatively short period of time and abnormally low and rapidly decreasing soil moisture. The detection and analysis of flash drought is essential because it has a significant impact on agriculture and natural ecosystems, and its impacts are associated with agricultural drought impacts. In South Korea, there is no clear definition of flash drought, so the purpose of this study is to identify and analyze its characteristics. In this study, flash drought detection condition was presented based on the satellite-derived drought index Evaporative Stress Index (ESI) from 2014 to 2018. ESI is used as an early warning indicator for rapidly-occurring flash drought a short period of time due to its similar relationship with reduced soil moisture content, lack of precipitation, increased evaporative demand due to low humidity, high temperature, and strong winds. The flash droughts were analyzed using hydrometeorological characteristics by comparing Standardized Precipitation Index (SPI), soil moisture, maximum temperature, relative humidity, wind speed, and precipitation. The correlation was analyzed based on the 8 weeks prior to the occurrence of the flash drought, and in most cases, a high correlation of 0.8(-0.8) or higher(lower) was expressed for ESI and SPI, soil moisture, and maximum temperature.

A Study on Cold Water Damage to Marine Culturing Farms at Guryongpo in the Southwestern Part of the East Sea (경북 구룡포 해역에서의 냉수 발생과 어장 피해)

  • Lee, Yong-Hwa;Shim, JeongHee;Choi, Yang-ho;Kim, Sang-Woo;Shim, Jeong-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.731-737
    • /
    • 2016
  • To understand the characteristics and strength of the cold water that has caused damage to marine-culturing farms around Guryongpo, in the southwestern part of Korea, surface and water column temperatures were collected from temperature loggers deployed at a sea squirt farm during August-November 2007 and from a Real-time Information System for Aquaculture environment operated by NIFS (National Institute of Fisheries Science) during July-August 2015 and 2016. During the study period, surface temperature at Guryongpo decreased sharply when south/southwestern winds prevailed (the 18-26th of August and 20-22nd of September 2007 and the 13-15th of July 2015) as a result of upwelling. However, the deep-water (20-30m) temperature increased during periods of strong north/northeasterly winds (the 5-7th and 16-18th of September 2007) as a result of downwelling. Among the cold water events that occurred at Guryongpo, the mass death of cultured fish followed strong cold water events (surface temperatures below $10^{\circ}C$) that were caused by more than two days of successive south/southeastern winds with maximum speeds higher than 5 m/s. A Cold Water Index (CWI) was defined and calculated using maximum wind speed and direction as measured daily at Pohang Meteorological Observatory. When the average CWI over two days ($CWI_{2d}$) was higher than 100, mass fish mortality occurred. The four-day average CWI ($CWI_{4d}$) showed a high negative correlation with surface temperature from July-August in the Guryongpo area ($R^2=0.5$), suggesting that CWI is a good index for predicting strong cold water events and massive mortality. In October 2007, the sea temperature at a depth of 30 m showed a high fluctuation that ranged from $7-23^{\circ}C$, with frequency and spectrum coinciding with tidal levels at Ulsan, affected by the North Korean Cold Current. If temperature variations at the depth of fish cages also regularly fluctuate within this range, damage may be caused to the Guryongpo fish industry. More studies are needed to focus on this phenomenon.

Estimation of the Moisture Maximizing Rate based on the Moisture Inflow Direction : A Case Study of Typhoon Rusa in Gangneung Region (수분유입방향을 고려한 강릉지역 태풍 루사의 수분최대화비 산정)

  • Kim, Moon-Hyun;Jung, Il-Won;Im, Eun-Soon;Kwon, Won-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.9
    • /
    • pp.697-707
    • /
    • 2007
  • In this study, we estimated the PMP(Probable Maximum Precipitation) and its transition in case of the typhoon Rusa which happened the biggest damage of all typhoons in the Korea. Specially, we analysed the moisture maximizing rate under the consideration of meteorological condition based on the orographic property when it hits in Gangneung region. The PMP is calculated by the rate of the maximum persisting 12 hours 1000 hPa dew points and representative persisting 12 hours 1000 hPa dew point. The former is influenced by the moisture inflow regions. These regions are determined by the surface wind direction, 850 hPa moisture flux and streamline, which are the critically different aspects compared to that of previous study. The latter is calculated using statistics program (FARD2002) provided by NIDP(National Institute for Disaster Prevention). In this program, the dew point is calculated by reappearance period 50-year frequency analysis from 5% of the level of significant when probability distribution type is applied extreme type I (Gumbel distribution) and parameter estimation method is used the Moment method. So this study indicated for small basin$(3.76km^2)$ the difference the PMP through new method and through existing result of established storm transposition and DAD(Depth-Area-Duration). Consequently, the moisture maximizing rate is calculated in the moisture inflow regions determined by meteorological fields is higher $0.20{\sim}0.40$ range than that of previous study. And the precipitation is increased $16{\sim}31%$ when this rate is applied for calculation.

Risk Assessment of Agricultural Worker's Exposure to Fungicide Thiophanate-methyl during Treatment in Green Pepper, Cucumber and Apple Fields (고추, 오이 및 사과 재배 중 살균제 Thiophanate-methyl 살포 시 농작업자의 노출 및 위해 평가)

  • Choi, Hoon;Kim, Jeong-Han
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.1
    • /
    • pp.73-81
    • /
    • 2014
  • The present study was carried out to assess exposure and risk to thiophanate-methyl wettable powder for agricultural worker during mixing/loading and application with power sprayer in green pepper, cucumber and apple fields. Dermal exposure was measured with patches, gloves, socks and masks, while inhalation exposure was evaluated with personal air pump and solid sorbent. Those methods were full validated before experiment. During mixing/loading, dermal exposure amount in green pepper, cucumber and apple fields was $24.0{\pm}6.7$, $4.5{\pm}1.5$ and $18.5{\pm}0.6mg$, corresponding to mean 0.007, 0.001 and 0.005% of prepared active ingredient, respectively. The major exposed part for mixer/loader was hands (78-92%). Dermal exposure amount for applicator in green pepper, cucumber and apple fields was $84.9{\pm}14.0$, $34.0{\pm}20.8$ and $30.7{\pm}9.1mg$, corresponding to mean 0.024, 0.016 and 0.013% of applied active ingredient, respectively. The main body parts of exposure in apple field were hands, while thighs and shins in other fields. Inhalation exposure amount in green pepper, cucumber and apple fields was $1.5{\pm}2.2$, $52.7{\pm}48.9$ and $4.0{\pm}4.9{\mu}g$ during mixing/loading and $0.2{\pm}0.1$, $23.2{\pm}12.4$ and $0.4{\pm}0.6{\mu}g$ for applicator, respectively. These results were suggested that main factors affecting dermal exposure were contact frequency to the plants, foliage density, hygienic behavior, work type, and working environment, while inhalation exposure was affected mainly by working environment, especially wind. In risk assessment, margin of safety for thiophanate-methyl in all cases was over 1. However, during application in green pepper field, margin of safety was close to 1.

Alleviation Effect of Pear Production Loss Due to Frequency of Typhoons in the Main Pear Production Area (배 특화지역에서의 태풍내습 빈도에 의한 낙과 피해 경감 효과)

  • Jeong, Jae Won;Kim, Seung Gyu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.2
    • /
    • pp.43-53
    • /
    • 2017
  • This study aims to analyze the effect of typhoons on pear production. Pears are typical fruits that are vulnerable to typhoon damages, so typhoons are negatively associated with pear productivity. However, relatively less pear damages by typhoons in the main pear production area, comparing to the average in Korea, have been reported. The main production area seems to adopt better agricultural techniques or practices to cope with natural disasters such as typhoons. Thus, this study tests the hypothesis that there are differences of production losses due to typhoons between the main pear production area and the rest using the stochastic frontier analysis. The main production area is defined by Location Quotient Index (LQI), and we found that LQI had a significant effect to decrease the productivity losses in the main production areas, which shows that those production areas alleviated the pear production loss due to typhoons.