• Title/Summary/Keyword: Frequency mitigation

Search Result 310, Processing Time 0.03 seconds

Enhancement of Ionospheric Correction Method Based on Multiple Aperture Interferometry (멀티간섭기법에 기반한 이온왜곡 보정기법의 보완)

  • Lee, Won-Jin;Jung, Hyung-Sup;Chae, Sung-Ho;Baek, Wonkyung
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.101-110
    • /
    • 2015
  • Synthetic Aperture Radar Interferometry (InSAR) is affected by various noise source such as atmospheric artifact, orbital error, processing noise etc.. Especially, one of the dominant noise source for long-wave SAR system, such as ALOS PALSAR (L-band SAR satellite) is the ionosphere effect because phase delays on radar pulse through the ionosphere are proportional to the radar wavelength. To avoid misinterpret of phase signal in the interferogram, it is necessary to detect and correct ionospheric errors. Recently, a MAI (Multipler Aperture SAR Interferometry) based ionospheric correction method has been proposed and considered one of the effective method to reduce phase errors by ionospheric effect. In this paper, we introduce the MAI-based method for ionospheric correction. Moreover we propose an efficient method that apply the method over non-coherent area using directional filter. Finally, we apply the proposed method to the ALOS PALSAR pairs, which include the west sea coast region in Korea. A polynomial fitting method, which is frequently adopted in InSAR processing, has been applied for the mitigation of phase distortion by the orbital error. However, the interferogram still has low frequency of Sin pattern along the azimuth direction. In contrast, after we applied the proposed method for ionospheric correction, the low frequency pattern is mitigated and the profile results has stable phase variation values within ${\pm}1rad$. Our results show that this method provides a promising way to correct orbital and ionospheric artifact and would be important technique to improve the accuracy and the availability for L-band or P-band systems.

Study on Standardization of the Environmental Impact Evaluation Method of Extremely Low Frequency Magnetic Fields near High Voltage Overhead Transmission Lines (고압 가공송전선로의 극저주파자기장 환경영향평가 방법 표준화에 관한 연구)

  • Park, Sung-Ae;Jung, Joonsig;Choi, Taebong;Jeong, Minjoo;Kim, Bu-Kyung;Lee, Jongchun
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.6
    • /
    • pp.658-673
    • /
    • 2018
  • Social conflicts with extremely low frequency magnetic field(ELF-MF) exposures are expected to exacerbate due to continued increase in electric power demand and construction of high voltage transmission lines(HVTL). However, in current environmental impact assessment(EIA) act, specific guidelines have not been included concretely about EIA of ELF-MF. Therefore, this study conducted a standardization study on EIA method through case analysis, field measurement, and expert consultation of the EIA for the ELF-MF near HVTL which is the main cause of exposures. The status of the EIA of the ELF-MF and the problem to be improved are derived and the EIA method which can solve it is suggested. The main contents of the study is that the physical characteristics of the ELF-MF affected by distance and powerload should be considered at all stages of EIA(survey of the current situation - Prediction of the impacts - preparation of mitigation plan ? post EIA planning). Based on this study, we also suggested the 'Measurement method for extremely low frequency magnetic field on transmission line' and 'Table for extremely low frequency magnetic field measurement record on transmission line'. The results of this study can be applied to the EIA that minimizes the damage and conflict to the construction of transmission line and derives rational measures at the present time when the human hazard to long term exposure of the ELF-MF is unclear.

Frequency analysis for annual maximum of daily snow accumulations using conditional joint probability distribution (적설 자료의 빈도해석을 위한 확률밀도함수 개선 연구)

  • Park, Heeseong;Chung, Gunhui
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.9
    • /
    • pp.627-635
    • /
    • 2019
  • In Korea, snow damage has been happened in the region with no snowfalls in history. Also, casual damage was caused by heavy snow. Therefore, policy about the Natural Disaster Reduction Comprehensive Plan has been changed to include the mitigation measures of snow damage. However, since heavy snow damage was not frequent, studies on snowfall have not been conducted in different points. The characteristics of snow data commonly are not same to the rainfall data. For example, some parts of the southern coastal areas are snowless during the year, so there is often no values or zero values among the annual maximum daily snow accumulation. The characteristics of this type of data is similar to the censored data. Indeed, Busan observation sites have more than 36% of no data or zero data. Despite of the different characteristics, the frequency analysis for snow data has been implemented according to the procedures for rainfall data. The frequency analysis could be implemented in both way to include the zero data or exclude the zero data. The fitness of both results would not be high enough to represent the real data shape. Therefore, in this study, a methodology for selecting a probability density function was suggested considering the characteristics of snow data in Korea. A method to select probability density function using conditional joint probability distribution was proposed. As a result, fitness from the proposed method was higher than the conventional methods. This shows that the conventional methods (includes 0 or excludes 0) overestimated snow depth. The results of this study can affect the design standards of buildings and also contribute to the establishment of measures to reduce snow damage.

Posttraumatic Stress by Work in Firefighters (소방공무원의 직무별 외상 후 스트레스)

  • Baek, Mi-Lye
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.3
    • /
    • pp.59-65
    • /
    • 2009
  • To investigate a posttraumatic stress, social support and work burden and to identify high risk group and related factors which were exerted influence on posttraumatic stress of firefighters. Data were gathered from total 264 firefighters consisting of 85 fire distinguishers & rescue workers, 96 emergency medical personnel and 83 in ambulance & fire truck drivers in C province and were analyzed 22 items by IES-R, 20 work burden items by Choi(2000), 8 social support items by Oh(2006) using SPSSWIN 14.0 program. Posttraumatic stress of general characteristics by work was showed significant difference in age, marriage status, education, position, office duration, mobilization frequency and experience of traumatic events. Posttraumatic stress were showed significant difference in 3 groups and fire distinguishers & rescue workers is the highest group. Posttraumatic stress was correlated with work burden(r=.317, p<0.01) for fire distinguishers & rescue workers, social support(r=-.331, p<0.01) and work burden(r=.522 p<0.001) for emergency medical personnel and work burden(r=.454, p<0.01) for ambulance & fire truck drivers. The high risk groups are fire distinguishers & rescue workers(60%), emergency medical personnel(55.2%)and ambulance & fire truck drivers(45.8%). Related factors are the experience seeing victim's danger for fire distinguishers & rescue workers(odds ratio=1.216, 95% confidence interval:1.068-1.383), and are work burden(odds ratio=1.100, 95% confidence interval:1.043-1.159) and office duration(odds ratio=1.010, 95% confidence interval 1.001-1.018) for emergency medical personnel, and are the experience seeing victim's danger(odds ratio=1.178, 95% confidence interval:1.010-1.373), age(odds ratio=1.129, 95%confidence interval:1.020-1.249), work burden(odds ratio=1.103, 95% confidence interval:1.034-1.177) for ambulance & fire truck drivers.

Baseline Survey Seismic Attribute Analysis for CO2 Monitoring on the Aquistore CCS Project, Canada (캐나다 아퀴스토어 CCS 프로젝트의 이산화탄소 모니터링을 위한 Baseline 탄성파 속성분석)

  • Cheong, Snons;Kim, Byoung-Yeop;Bae, Jaeyu
    • Economic and Environmental Geology
    • /
    • v.46 no.6
    • /
    • pp.485-494
    • /
    • 2013
  • $CO_2$ Monitoring, Mitigation and Verification (MMV) is the essential part in the Carbon Capture and Storage (CCS) project in order to assure the storage permanence economically and environmentally. In large-scale CCS projects in the world, the seismic time-lapse survey is a key technology for monitoring the behavior of injected $CO_2$. In this study, we developed a basic process procedure for 3-D seismic baseline data from the Aquistore project, Estevan, Canada. Major target formations of Aquistore CCS project are the Winnipeg and the Deadwood sandstone formations located between 1,800 and 1,900 ms in traveltime. The analysis of trace energy and similarity attributes of seismic data followed by spectral decomposition are carried out for the characterization of $CO_2$ injection zone. High trace energies are concentrated in the northern part of the survey area at 1,800 ms and in the southern part at 1,850 ms in traveltime. The sandstone dominant regions are well recognized with high reflectivity by the trace energy analysis. Similarity attributes show two structural discontinuities trending the NW-SE direction at the target depth. Spectral decomposition of 5, 20 and 40 Hz frequency contents discriminated the successive E-W depositional events at the center of the research area. Additional noise rejection and stratigraphic interpretation on the baseline data followed by applying appropriate imaging technique will be helpful to investigate the differences between baseline data and multi-vintage monitor data.

Seismic wave propagation through surface basalts - implications for coal seismic surveys (지표 현무암을 통해 전파하는 탄성파의 거동 - 석탄 탄성파탐사에 적용)

  • Sun, Weijia;Zhou, Binzhong;Hatherly, Peter;Fu, Li-Yun
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • Seismic reflection surveying is one of the most widely used and effective techniques for coal seam structure delineation and risk mitigation for underground longwall mining. However, the ability of the method can be compromised by the presence of volcanic cover. This problem arises within parts of the Bowen and Sydney Basins of Australia and seismic surveying can be unsuccessful. As a consequence, such areas are less attractive for coal mining. Techniques to improve the success of seismic surveying over basalt flows are needed. In this paper, we use elastic wave-equation-based forward modelling techniques to investigate the effects and characteristics of seismic wave propagation under different settings involving changes in basalt properties, its thickness, lateral extent, relative position to the shot position and various forms of inhomogeneity. The modelling results suggests that: 1) basalts with high impedance contrasts and multiple flows generate strong multiples and weak reflectors; 2) thin basalts have less effect than thick basalts; 3) partial basalt cover has less effect than full basalt cover; 4) low frequency seismic waves (especially at large offsets) have better penetration through the basalt than high frequency waves; and 5) the deeper the coal seams are below basalts of limited extent, the less influence the basalts will have on the wave propagation. In addition to providing insights into the issues that arise when seismic surveying under basalts, these observations suggest that careful management of seismic noise and the acquisition of long-offset seismic data with low-frequency geophones have the potential to improve the seismic results.

Analysis of Unrest Signs of Activity at the Baegdusan Volcano (백두산 화산의 전조활동 분석 연구)

  • Yun, Sung-Hyo;Lee, Jeong-Hyun
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • The Baegdusan volcano is one of the most active volcanoes in northeastern Asia, and the 10th century eruption was the most voluminous eruption in the world in recent 2,000 years. During the period from 2002 to 2005, volcanic earthquakes and abnormal surface distortions by suspected subsurface magma intrusion beneath the volcano were observed in the Baegdusan area. Seismic activity has gradually increased with earthquake swarms during 2002-2003 and hundreds of seismic event in a day, especially annual peak of 2,100 in 2003. Then the number of seismic activity has declined since 2006 to the background level in 1999-2001. According to the typical frequency of volcanic earthquakes in the Baegdusan volcano, the frequency distribution of typical volcanic earthquakes between 2002 and 2005 indicates that all the main frequency of the earthquakes basically falls down less than 5 Hz and 5-10 Hz. These events are all the VT-B and LP events caused by the shallow localized fracture and intrusion of magma. The horizontal displacement measurement by GPS during the period from 2000 to 2007 of the Baegdusan stratovolcano area indicates that an inflated process has been centered at the summit caldera since 2002. The displacement between 2002 and 2003 reached at a maximum value of 4 cm. After 2003, the deformation rate of the volcano continued to decrease with unusual variation during the period from 2006 to 2007. After 2003 the vertical displacement uplift rate falls down gradually but still keeps in an uplift trend in northern slope. It is generally believed that when $^3He/^4He(R)$ in a gas sample from a hot spring exceeds $^3He/^4He(R)$ in the atmosphere, it can be concluded that mantle-source. And temperatures of hot springs are rising steadily to $83^{\circ}C$. It is unrest signals at the Baegdusan, which is potentially active. The Baegdusan volcano is now in unrest status, there is eruption threat in the near future. Intensified monitoring and emergency response plan for volcanic risk mitigation are urgent for the volcano.

Landslide Vulnerability Mapping considering GCI(Geospatial Correlative Integration) and Rainfall Probability In Inje (GCI(Geospatial Correlative Integration) 및 확률강우량을 고려한 인제지역 산사태 취약성도 작성)

  • Lee, Moung-Jin;Lee, Sa-Ro;Jeon, Seong-Woo;Kim, Geun-Han
    • Journal of Environmental Policy
    • /
    • v.12 no.3
    • /
    • pp.21-47
    • /
    • 2013
  • The aim is to analysis landslide vulnerability in Inje, Korea, using GCI(Geospatial Correlative Integration) and probability rainfalls based on geographic information system (GIS). In order to achieve this goal, identified indicators influencing landslides based on literature review. We include indicators of exposure to climate(rainfall probability), sensitivity(slope, aspect, curvature, geology, topography, soil drainage, soil material, soil thickness and soil texture) and adaptive capacity(timber diameter, timber type, timber density and timber age). All data were collected, processed, and compiled in a spatial database using GIS. Karisan-ri that had experienced 470 landslides by Typhoon Ewinia in 2006 was selected for analysis and verification. The 50% of landslide data were randomly selected to use as training data, while the other 50% being used for verification. The probability of landslides for target years (1 year, 3 years, 10 years, 50 years, and 100 years) was calculated assuming that landslides are triggered by 3-day cumulative rainfalls of 449 mm. Results show that number of slope has comparatively strong influence on landslide damage. And inclination of $25{\sim}30^{\circ}C$, the highest correlation landslide. Improved previous landslide vulnerability methodology by adopting GCI. Also, vulnerability map provides meaningful information for decision makers regarding priority areas for implementing landslide mitigation policies.

  • PDF

Evaluation for Rock Cleavage Using Distribution of Microcrack Spacings (IV) (미세균열의 간격 분포를 이용한 결의 평가(IV))

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.127-141
    • /
    • 2017
  • Jurassic granite from Geochang was analysed with respect to the characteristics of the rock cleavage. The multicriteria evaluation for the six directions of rock cleavages was performed using the microcrack spacing-related parameters derived from the enlarged photomicrographs (${\times}6.7$) of the thin section and the spacing-cumulative frequency diagrams. The results of analysis for the representative values of these spacing parameters with respect to the rock cleavage are summarized as follows. First, the analysis for deriving the main parameter indicating the order of arrangement among six diagrams was performed. The values of five parameters with respect to six directions of the rock cleavages were arranged in increasing or decreasing order for the above analysis. The decreasing order of the values of main parameter(mean spacing-median spacing, $S_{mean}-S_{median}$) and mean spacing are consistent with the order of H1, H2, G1, G2, R1 and R2 directions. These sequential arrangements of six directions of the rock cleavages can provide a basis for those of the six diagrams related to spacing. Second, the nine correlation charts between the above main parameter and various parameters were arranged in decreasing order of correlation coefficient ($R^2$). These related charts shows a high correlation of power-law function in common. The values of mean spacing, density (${\rho}$) and length of line oa are directly proportional to the value of main parameter, while the values of constant (a), exponent (${\lambda}$), spacing frequency (N), length of line oa', slope of exponential straight line (${\theta}$) and total length ($1mm{\geq}$) are inverse proportional. Third, the results of correlation analysis between the values of parameters for three planes and those for three rock cleavages are as follows. The values of frequency, total spacing, constant, exponent, slope and length of line oa' for three planes and three rock cleavages show an order of R' < G' < H' and H < G < R, respectively. On the other hand, the values of mean spacing, (mean spacing-median spacing), density and length of line oa show an order of H' < G' < R' and R < G < H, respectively. The correlation of the mutually reverse order of the values of parameters between three planes and three rock cleavages can be drawn. This type of correlation analysis is useful for discriminating three quarrying planes.

Sensitivity Analysis on Ecological Factors Affecting Forest Fire Spreading: Simulation Study (산불확산에 영향을 미치는 생태학적 요소들간의 민감도 분석: 시뮬레이션 연구)

  • Song, Hark-Soo;Lee, Sang-Hee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.3
    • /
    • pp.178-185
    • /
    • 2013
  • Forest fires are expected to increase in severity and frequency under global climate change and thus better understanding of fire dynamics is critical for mitigation and adaptation. Researchers with different background, such as ecologists, physicists, and mathematical biologists, have developed various simulation models to reproduce forest fire spread dynamics. However, these models have limitations in the fire spreading because of the complicated factors such as fuel types, wind, and moisture. In this study, we suggested a simple model considering the wind effect and two different fuel types. The two fuels correspond to susceptible tree and resistant tree with different probabilities of transferring fire. The trees were randomly distributed in simulation space with a density ranging from 0.0 (low) to 1.0 (high). The susceptible tree had higher value of the probability than the resistant tree. Based on the number of burnt trees, we then carried out the sensitivity analysis to quantify how the forest fire patterns are affected by wind and tree density. The statistical analysis showed that the total tree density had greatest effect on the forest fire spreading and wind had the next greatest effect. The density of the susceptible tree was relatively lower factor affecting the forest fire. We believe that our model can be a useful tool to explore forest fire spreading patterns.