• Title/Summary/Keyword: Frequency Scanning Antenna

Search Result 27, Processing Time 0.028 seconds

Frequency determination for beam command in rotating phase and frequency scan radar systems (회전 위상-주파수 주사 레이다 시스템의 빔 명령을 위한 주파수 결정)

  • 이민준;박정순;송익호;김광순;장태주
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.5
    • /
    • pp.1319-1324
    • /
    • 1998
  • The phase and frequency commands of a ratating radar system that utilizes frequency scanning to steer the beam in the azimuth direction and phase shifters in the elevation direction are derived in terms of the angles of the groung based coordinate system. The antenna type considered is slotted arrays that are easy to construct at such high microwave frequency as the X band. The frequency that has non-linear characteristics as a functio ofthe elevation angle is plotted and the derived frequency equation is aproximated to be a simple form to reduce the calculation time for real time multi-function radar systems. It is shown that the approximated frequency command is in good agreement with the exact one if the range of azimuth scanning is limited by ${\pm}10^{\circ}$.

  • PDF

A Study on the Desin of Microstrip Antenna for Mobile System (Mobile 시스템을 위한 마이크로스트립 안테나 설계에 관한 연구)

  • 고영혁;이종악
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.4 no.2
    • /
    • pp.34-40
    • /
    • 1993
  • A microstrip antenna for mobile system are designed at the resont frequency 0.88 GHz. The microstrip array antenna are designed to depend on the size of rectanular microstrip path for the relative current distribution to be 1:4.69:1 using Tchebyscheff polynominals. Gain difference between the main lobe and sidelobe is calculated for theoritical values of 20 dB. The designed microstrip array antenna are mesureed various characteristics, such as return loss, radiation pattern, V.S.W.R, bandwidth, and agreed with each other and theoretical value. Also it is presented a process of phase variation of patch array antenna depend on relative current distribution for beam scanning.

  • PDF

A Beam Steering Method of the Rotating Scanning Phased Array Antenna (회전 주사식 위상 배열 안테나의 빔 조향 방법)

  • 한동호;염동진;권경일;홍동희
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.2
    • /
    • pp.147-156
    • /
    • 1996
  • In this paper we proposed a beam steering equation for the planar slotted waveguide array antenna. The tilt angle measured from the rotating axis and the aperture distribution of the antenna were the most important factors for the beam steering. From the equation, we calculated the frequency and phase distribution of the aperture for any desired beam direction. And we developed a high speed control algorithm delivering the phase data to the phase shifters of a one-dimensional phased array antenna. To reduce complexity of the control circuit and the phase delivery time, we proposed the serial phase repeating method. Because of its simplicity, we expect it can be useful for a large 2- dimensional fully phased array antenna.

  • PDF

The injection-locking coupled oscillators for the active integrated phased array antenna (능동 위상배열 안테나를 위한 Injection-locking coupled oscillators)

  • 김교헌;이두한;류연국;이승무;오일덕;홍의석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.9
    • /
    • pp.2362-2372
    • /
    • 1996
  • This paper deals with the design and development of an Injection-Locking Coupled Oscillators(ILCO), which functions like phase-shifter in the Active Intergrated Phased Array Antenna(AIPAA). This linear array 2-element ILCO consists of two Injection Locking Hair-pin Resonator Oscillators(ILHRO) and an unilateral amplifier. The first and second elements of the ILCO have same frequency tuning range but locking bandwidths of 11.5MHz and 14MHz respectively. A phase shift of .DELTA..PHI.=158.4.deg.(-78.0.deg. to 80.4.deg.) could be obtained inthe second element of ILCO when the first elementof the ILCO was in the reference locking mode(.DELTA..PHI.=0.deg.). When the ILCO is applied to the AIPAA, the predicted beam scanning angle value will be 38.4.deg.. Each ILCO gives good frequency stability and lower AM, FM, and PM noise charactheristics in the mutual coupling lockingmode. The ILCO can not only play a part as the phase shifter for the AIPAA but it can also be usedas the power combining device in the mm-wave frequency range and as a part of a T/R MMIC module.

  • PDF

The Design of Microstrip Array Antenna Depend on Patch Size (패치크기에 의존하는 마이크로스트립 어레이 안테나 설계)

  • 고영혁;이종악;정의붕
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.11
    • /
    • pp.1063-1070
    • /
    • 1991
  • A microstrip array antenna are designed to depend on the size of rectangular microstrip patch for the relative current destribution to be 1:2:2:1 or 1:1:2:2:1:1 using Tchebyscheff polynominals, and it consist of sharp beam pattern. Gain difference between the main lobe and sidelobe is calculated for theoritical values of 21.97 db or 29.54 db. The designed microstrip array antenna are measureed various characteristics, such as return loss, resonant frequency, radiation pattern, bandwidth, beamwidth, and agreed with each other and theoretical value. Also it is presented a process of phase variation of patch array antenna depend on relative current distribution for beam scanning.

  • PDF

Localization of Human Motion Using a 8×8 Phased Array Antenna (8×8 위상배열안테나를 이용한 위치추적 시스템)

  • Goh, Hoseok;Han, Heeje;Park, Soonwoo;Kim, Chan-woo;Kim, Hongjoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.9
    • /
    • pp.1197-1201
    • /
    • 2018
  • In this paper, a Doppler radar for a localization of a human motion is demonstrated. In the system, we used a $8{\times}8$ phased array antenna using metamaterial phase shifters for easy and precise control of antenna beam pattern. Scanning area is a circular sector with an inscribed angle of $60^{\circ}$ and a diameter of 45m. This area is divided with 15 designated area and each area is scanned for 0.2 second. When there is a motion in a designated area, we are able to detect a frequency shift due to a Doppler effect. In this way it is possible to detect the location of motion. The experiment shows that 78% of position accuracy. The remaining 22% occurred the surroundings of the designated area.

Development of Robotic System based on RFID Scanning for Efficient Inventory Management of Thick Plates (효율적인 후판 재고관리를 위한 RFID 스캐닝 로봇 시스템 개발)

  • Lee, Kwang-Hyoung;Min, So-Yeon;Lee, Jong-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.1-8
    • /
    • 2016
  • Automation of inventory management in a steel plate factory was a difficult problem unresolved for a long time. And now, it is also necessary to work diligently in the steel industry on efficient inventory management of thick plates. So far, the environmental characteristics of stacked thick plates means it is not easy to apply advanced technology for their automatic identification. In this paper, we propose a thick-plate robotic scanning system based on radio-frequency identification (RFID) that can provide quick and accurate inventory management by acquiring plate information after the scanning automatically recognizes the RFID tags under difficult load conditions. This system is equipped with a crane to move the plates in a pulled-up operation. It is equipped with a plate-only linear dipole antenna only for scanning the position of the plate tag. Only the linear dipole antenna, while moving the x-axis and y-axis information, automatically identifies the tag information attached to the plate. The tag information acquired by the system is used for stockpiling and is managed by steel plate inventory control software. The effectiveness of the proposed system is verified through field performance evaluation. As a result, the recognition rate of the plate tags is 99.9% at a maximum distance of 320 cm. The developed thick-plate antenna showed excellent performance compared to an existing commercial antenna.

Study on the Radiation Pattern of Radiated Emission above 1 GHz (1 GHz 이상에서의 복사 방출 방사 패턴에 관한 연구)

  • Chung, Yeon-Choon;Lee, Soon-Yong;Kwun, Suk-Tai
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.3
    • /
    • pp.336-344
    • /
    • 2011
  • The purpose of this study is to analyze the radiation-pattern characteristics above 1 GHz for the electromagnetic wave radiated from multi-slot such as ventilations, etc. on the enclosure of an EUT and so to make recommendations for suitable test methods. An experimental EUT was formed by putting a comb-generator at the center of a rectangular enclosure with 4 slots, and its radiation pattern was analyzed in the frequency range of 1~6 GHz. As analysis results, multi-lobe appears above 2 GHz and the number of multi-lobes is growing as the frequency increases. And real radiated-emission measurements were performed for the experimental EUT by scanning a receiving antenna in the height of 1~4 m and tilting toward maximum radiation, as well as setting the height of a receiving antenna to the central position of the EUT which is prescribed at the present standards. The measured results are +12.8 dB in the scanning and +16.4 in the scanning and tilting compared with the present standard test method. Therefore, the latter must be revised in order to consider the radiation pattern above 1 GHz.

Study on Imaging with Scanning Airborne W-band Millimeter Wave Radiometer

  • Kong, De-Cai;Kim, Yong-Hoon;Li, Jing;Zhang, Sheng-Wei;Sun, Mao-Hua;Liu, He-Guang;Jiang, Jing-Shan
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.593-597
    • /
    • 2002
  • The paper introduces a research on the W-band Millimeter Wave Radiometer(RADW92) through an airborne experiment. Microwave remote sensing images of part of the Yellow River and the WeiHe River are of fared. Analysis of factors influencing the image qualities as well as the resolutions to them are also included. The RADW92 is the first generation of Millimeter Wave Radiometer in China, which works with operating frequency 92 GHz, the bandwidth 2 GHz, the integration time 60ms, the system sensitivity 0.6k and the linearity better than 0.999. Cassegrain Antenna is designed for imaging by conically scanning. The result of the experiment suggested that RADW92 had been adequate for space use.

  • PDF

A Study of 0.5-bit Resolution for True-Time Delay of Phased-Array Antenna System

  • Cha, Junwoo;Park, Youngcheol
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.96-103
    • /
    • 2022
  • This paper presents the analysis of increasing the resolution of True-Time-Delay (TTD) by 0.5-bit for phased-array antenna system which is one of the Multiple-Input and Multiple Output (MIMO) technologies. For the analysis, a 5.5-bit True-Time Delay (TTD) integrated circuit is designed and analyzed in terms of beam steering performance. In order to increase the number of effective bits, the designed 5.5-bit TTD uses Single Pole Triple Throw (SP3T) and Double Pole Triple Throw (DP3T) switches, and this method can minimize the circuit area by inserting the minimum time delay of 0.5-bit. Furthermore, the circuit mostly maintains the performance of the circuit with the fully added bits. The idea of adding 0.5-bit is verified by analyzing the relation between the number of bits and array elements. The 5.5-bit TTD is designed using 0.18 ㎛ RF CMOS process and the estimated size of the designed circuit excluding the pad is 0.57×1.53 mm2. In contrast to the conventional phase shifter which has distortion of scanning angle known as beam squint phenomenon, the proposed TTD circuit has constant time delays for all states across a wide frequency range of 4 - 20 GHz with minimized power consumption. The minimum time delay is designed to have 1.1 ps and 2.2 ps for the 0.5-bit option and the normal 1-bit option, respectively. A simulation for beam patterns where the 10 phased-array antenna is assumed at 10 GHz confirms that the 0.5-bit concept suppresses the pointing error and the relative power error by up to 1.5 degrees and 80 mW, respectively, compared to the conventional 5-bit TTD circuit.