• 제목/요약/키워드: Frequency Response Model

검색결과 1,400건 처리시간 0.031초

Seismic Response from Microtremor of Chogye Basin, Korea (초계분지의 상시미동 지진응답)

  • Lee, Heekyoung;Kim, Roungyi;Kang, Tae-Seob
    • Geophysics and Geophysical Exploration
    • /
    • 제20권2호
    • /
    • pp.88-95
    • /
    • 2017
  • Chogye basin, which is surrounded by country rock, has a closed-basin form. In such a basin, incident seismic energy can form multiply reflected waves, thus causing energy concentration to occur at this closed-basin area. Microtremor measurement survey was performed at the Chogye basin, which is located in Chogye-myeon and Jeokjungmyeon, Hapcheon-gun, Gyeongsangnam-do, Republic of Korea. Microtremor data were transformed into the frequency domain, and then the horizontal-to-vertical spectral ratios (HVSR) were calculated. Fundamental resonance frequencies were estimated from the HVSR results for every observation point. Using the empirical relationship between site period and thickness for sediment sites in Korea known from the previous study, the distribution of sediment thickness of the Chogye basin was estimated from the fundamental resonance frequencies. Being compared with the mountainous rim with steep slope, the measurement points inside the basin have low values of the fundamental resonance frequency with the minimum of 1.03 Hz, which corresponds to the thickness of sedimentary layer with the maximum depth of about 100 m. A three-dimensional basin model was constructed for bedrock topography of the Chogye basin by an interpolation of basin depths estimated at each measurement site.

Experimental Study of Friction Pendulum System to Improve the Seismic Capacity of Transformer (변압기의 내진성능 향상을 위한 마찰진자 면진장치의 시험 연구)

  • Jang, Jung-Bum;Kim, Jeong-Ki;Hwang, Kyeong-Min;Ham, Kyung-Won;Park, Jin-Wan;Lee, Chan-Wook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • 제12권2호
    • /
    • pp.1-8
    • /
    • 2008
  • Friction pendulum system is developed to prevent the damage of transformer, which is the most important among the electric power facilities, due to the earthquake and its seismic capacity is verified through the shaking table test. The applicability of friction pendulum system is confirmed as test results of compressive capacity test and friction test. Especially, as a result of shaking table test with a large scale transformer model, friction pendulum system gives to the reduction of maximum response acceleration by 30% at anchorage of transformer and 59% at the top of porcelain bushing comparing with the existing anchorage type. In addition to the reduction of maximum response acceleration, natural frequency of transformer is shifted to long period due to the friction pendulum system. In case that friction pendulum system is applied to the transformer, the damage of transformer can be prevented effectively under the earthquake.

Responses of Artificial Flow-Sensitive Hair for Raider Detection via Bio-Inspiration (침입자 탐지용 인공 유동감지모의 응답 모델링)

  • Park, Byung-Kyu;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제34권4호
    • /
    • pp.355-364
    • /
    • 2010
  • Filiform hairs that respond to movements of the surrounding medium are the mechanoreceptors commonly found in arthropods and vertebrates. In these creatures, the filiform hairs function as a sensory system for raider detection. Parametric analyses of the motion response of filiform hairs are conducted by using a mathematical model of an artificial flow sensor to understand the possible operating ranges of a microfabricated device. It is found that the length and diameter of the sensory hair are the major parameters that determine the mechanical sensitivities and responses in a mean flow with an oscillating component. By changing the hair length, the angular displacement, velocity, and acceleration could be detected in a wide range of frequencies. Although the torques due to drag and virtual mass are very small, they are also very influential factors on the hair motion. The resonance frequency of the hair decreases as the length and diameter of the hair increase.

High Performance Control of IPMSM using SV-PWM Method Based on HAI Controller (HAI 제어기반 SV PWM 방식을 이용하나 IPMSM의 고성능 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • 제23권8호
    • /
    • pp.33-40
    • /
    • 2009
  • This paper presents the high performance control of interior permanent magnet synchronous motor(IPMSM) using space vector(SV) PWM method based on hybrid artificial intelligent(HAI) controller. The HAI controller combines the advantages between adaptive fuzzy control and neural network The SV PWM method is applied to a speed control system of motor in the industry field until now and is feasible to improve harmonic rate of output current, switching frequency and response characteristics. This HAI controller is used instead of conventional PI controller in order to solve problems happening when calculating a reference voltage. The HAI controller improves speed performance by hybrid combination of reference model-based adaptive mechanism method, fuzzy control and neural network. This paper analyzes response characteristics of parameter variation, steady-state and transient-state using proposed HAI controller and this controller compares with conventional fuzzy neural network(FNN) and PI controller. Also, this paper proves validity of HAI controller.

Evaluating the Soil Salinity of Reclaimed Wastewater Irrigation in Paddy Plots using the Soil-Water-Atmosphere-Plant Model and Water Management Response Indicators (하수처리수의 재이용에 따른 SWAP 모형과 물관리반응지수를 이용한 논에서의 토양염분 평가)

  • Jang, Tae-Il;Hwang, Sye-Woon;Jeong, Han-Seok;Kang, Moon-Seong;Park, Seung-Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제54권2호
    • /
    • pp.103-113
    • /
    • 2012
  • 본 연구에서는 하수재이용에 따른 논에서의 토양염분 변화를 추정하기 위하여 경기도 화성시 수원환경사업소 인근에 위치한 병점지구를 대상으로 수문순환과 작물성장과의 관계를 고려한 SWAP (Soil-Water-Atmosphere-Plant) 모형을 이용하여 평가하였다. 실험에 사용한 관개용수는 지하수 (TR#1), 하수처리장 방류수+여과+UV (TR#3)로 분류하여 모형에 사용하였다. 유입관개수의 EC (Electrical Conductivity)는 지하수 관개수인 TR#1이 다른 처리구에 비해 작았고, TR#3의 경우 0.442~0.698 dS $m^{-1}$의 범위를 보였다. 모형의 보정과 검정을 위해서 대상지구에 FDR (Frequency Domain Reflection)을 설치하여 토양수분함유량과 염분농도를 토심에 따라 일단위로 모니터링 하였다. 토심 (50, 100, 140 cm)에 따른 토양함수량의 RMSE는 검정기간 중 TR#1에서 0.003~0.064 $cm^3\;cm^{-3}$, TR#3에서 0.001 $cm^3\;cm^{-3}$ 범위를 보여 주었고, 토양염분의 보정기간 중 토심별 RMSE는 TR#1에서 0.018~0.037 dS $m^{-1}$, TR#3에서 0.004~0.014 dS $m^{-1}$ 범위를 보여 적용성이 있는 것으로 나타났다. 토양내의 염분수지 분석 결과, 토양에서의 염분저장량이 (-)로 나타나 토양내로 침출되는 것으로 나타났으며, WMRI (Water Management Response Indicators)을 이용한 분석 결과, 높은 침투능으로 인하여 토양에서의 염분 집적 영향은 낮은 것으로 평가되었다.

Damage Detection of Building Structures Using Ambient Vibration Measuresent (자연진동을 이용한 건물의 건전도 평가)

  • Kim, Sang Yun;Kwon, Dae Hong;Yoo, Suk Hyeong;Noh, Sam Young;Shin, Sung Woo
    • KIEAE Journal
    • /
    • 제7권4호
    • /
    • pp.147-152
    • /
    • 2007
  • Numerous non-destructive tests(NDT) to assess the safety of real structures have been developed. System identification(SI) techniques using dynamic responses and behaviors of structural systems become an outstanding issue of researchers. However the conventional SI techniques are identified to be non-practical to the complex and tall buildings, due to limitation of the availability of an accurate data that is magnitude or location of external loads. In most SI approaches, the information on input loading and output responses must be known. In many cases, measuring the input information may take most of the resources, and it is very difficult to accurately measure the input information during actual vibrations of practical importance, e.g., earthquakes, winds, micro seismic tremors, and mechanical vibration. However, the desirability and application potential of SI to real structures could be highly improved if an algorithm is available that can estimate structural parameters based on the response data alone without the input information. Thus a technique to estimate structural properties of building without input measurement data and using limited response is essential in structural health monitoring. In this study, shaking table tests on three-story plane frame steel structures were performed. Out-put only model analysis on the measured data was performed, and the dynamic properties were inverse analyzed using least square method in time domain. In results damage detection was performed in each member level, which was performed at story level in conventional SI techniques of frequency domain.

Modelling of aluminium foam sandwich panels

  • D'Alessandro, Vincenzo;Petrone, Giuseppe;De Rosa, Sergio;Franco, Francesco
    • Smart Structures and Systems
    • /
    • 제13권4호
    • /
    • pp.615-636
    • /
    • 2014
  • Aluminium Foam Sandwich (AFS) panels are becoming always more attractive in transportation applications thanks to the excellent combination of mechanical properties, high strength and stiffness, with functional ones, thermo-acoustic isolation and vibration damping. These properties strongly depend on the density of the foam, the morphology of the pores, the type (open or closed cells) and the size of the gas bubbles enclosed in the solid material. In this paper, the vibrational performances of two classes of sandwich panels with an Alulight(R) foam core are studied. Experimental tests, in terms of frequency response function and modal analysis, are performed in order to investigate the effect of different percentage of porosity in the foam, as well as the effect of the random distribution of the gas bubbles. Experimental results are used as a reference for developing numerical models using finite element approach. Firstly, a sensitivity analysis is performed in order to obtain a limit-but-bounded dynamic response, modelling the foam core as a homogeneous one. The experimental-numerical correlation is evaluated in terms of natural frequencies and mode shapes. Afterwards, an update of the previous numerical model is presented, in which the core is not longer modelled as homogeneous. Mass and stiffness are randomly distributed in the core volume, exploring the space of the eigenvectors.

Modeling and CAE Simulation of Chassis Driveline Test Bench for Vehicle NVH Improvement (차량 NVH개선 설계를 위한 샤시 구동계의 Driveline Test Bench 구성 및 CAE 해석)

  • Kim, Kee-Joo;Ju, Hyung-Jun;Lee, Yong-Heon;Bae, Dae-Sung;Sung, Chang-Won;Baik, Young-Nam;Sohn, Il-Seon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제17권1호
    • /
    • pp.114-119
    • /
    • 2009
  • The authors have investigated the NVH problems of drive system in full vehicle test. However it is difficult to define the NVH problems of driveline system. Since it is hard to measure the rotating part and it is vague that only the drive system induces the NVH problem. Vibration in a driveline is presented in this paper. In the experiment, the rear sub-frame and propeller shafts and axle were composed and mounted with rubber each other. For applying the vibration input instead of the torsional vibration effect of an engine, the shaker was taken. In particular, torsional vibration due to fluctuating forced vibration excitation across the joint between driveline and rear sub-frame was carefully examined. Accordingly, the joint response was checked from experiments and the FE-simulation using FRF (frequency response function) analysis was performed. All test results were signal processed and validated against numerical simulations. In present study, the new test bench for measuring the vibration signal and simulating the vehicle chassis system was proposed. The modal value and the mode shape of components were analyzed using the CAE model to identify the important components affecting driveline noise and vibration. It could be reached that the simplified test bench could be well established and be used for design guide and development of the vehicle chassis components.

An Identification System Using QR Codes for Production and Disposal Information of Internet of Things Devices (QR코드 기반 사물인터넷 디바이스의 생산/폐기 정보 식별체계)

  • Lim, Jae-Hyun;Seo, Jeongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 한국정보통신학회 2016년도 춘계학술대회
    • /
    • pp.664-665
    • /
    • 2016
  • This paper proposes an identification system based on QR (Quick Response) code for production and disposal information of Internet of Things (IoT) devices. Three thousands and five hundreds of electronic devices have replaced and discarded in South Korea in a year, and twenty millions to fifty millions tons of e-wastes have happened throughout the world every year. According to Gartner, market research institution, the number of IoT devices will increase from 2.3 billions in 2013 to 30 billions in 2020, however, the regulations and systems which take into account environment were not prepared. The identification systems for reflecting information of devices, which are produced or discarded, are required to resolve the problem. The proposed identification system based on QR code can store much more massive data such as the producer, product's model, serial number, recycling rate, recovering rate, recyclability rate, recoverability rate than RFID (Radio-Frequency Identification). Also, users can immediately recognize production and disposal information by a QR code application in a smartphone.

  • PDF

Effects of Oscillating Flow on the Dynamic Behavior of an Artificial Sensory Hair (인공 감각모의 동적 거동에 미치는 진동유동의 영향)

  • Park, Byung-Kyu;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제35권8호
    • /
    • pp.847-853
    • /
    • 2011
  • Filiform hairs that respond to movements of the surrounding medium are the mechanoreceptors commonly found in arthropods and vertebrates. The hairs function as a sensory system for perceiving information produced by prey, predators, or conspecifics. A mathematical model is proposed, and the parametric analyses for the response of artificial filiform hair are conducted to design and predict the performance of a microfabricated device. The results for the Cytop hair, one of the most popular polymer optical fibers (POFs), show that the fundamental mode has a dominant effect on the hair behavior in an oscillating medium flow. The dynamic behavior of sensory hair is also dependent on the physical dimensions such as length and diameter. It is found that the artificial hair with a high elastic modulus does not show a resonance in the biologically important frequency range.