• Title/Summary/Keyword: Frequency Response

Search Result 5,554, Processing Time 0.033 seconds

Harmonic seismic waves response of 3D rigid surface foundation on layer soil

  • Messioud, Salah;Sbartai, Badredine;Dias, Daniel
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.109-118
    • /
    • 2019
  • This study, analyses the seismic response for a rigid massless square foundation resting on a viscoelastic soil layer limited by rigid bedrock. The foundation is subjected either to externally applied forces or to obliquely incident seismic body or surface harmonic seismic waves P, SV and SH. A 3-D frequency domain BEM formulation in conjunction with the thin layer method (TLM) is adapted here for the solution of elastodynamic problems and used for obtained the seismic response. The mathematical approach is based on the method of integral equations in the frequency domain using the formalism of Green's functions (Kausel and Peck 1982) for layered soil, the impedance functions are calculated by the compatibility condition. In this study, The key step is the characterization of the soil-foundation interaction with the input motion matrix. For each frequency the impedance matrix connects the applied forces to the resulting displacement, and the input motion matrix connects the displacement vector of the foundation to amplitudes of the free field motion. This approach has been applied to analyze the effect of soil-structure interaction on the seismic response of the foundation resting on a viscoelastic soil layer limited by rigid bedrock.

Analysis of the Cylindrical Metamaterial Slab Using the Higher Order-mode Finite Difference Time Domain Method (고차모드 시간영역 유한차분법을 이용한 원통형 메타물질 Slab의 해석)

  • Hong, Ic-Pyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.38-44
    • /
    • 2010
  • In this paper, the higher order FDTD(Finite-Difference Time-Domain) method is used to obtain the frequency response characteristics of the cylindrical metamaterial slab. FDTD method is one of strongest electromagnetic numerical method which is widely used to analyze the metamaterial structure because of its simplicity and the dispersive FDTD equation which has the dispersive effective dielectric constant and permeability are derived to analyze the metamaterials. This derived dispersive FDTD equation has no errors in analyzing the dielectric materials but there are some time and frequency errors in case of analyzing the metamaterials. We used the higher order FDTD method to obtain the accurate frequency response of the metamaterials. Comparisons between the dispersive FDTD method and the higher order FDTD method are performed in this paper also. From the results, we concluded that more accurate frequency response for various metamaterials applications can be obtained using the proposed method in this paper.

Nonlinear Aspects of the Frequency Response of a Gas-filled Bubble Oscillator (기포진동 주파수응답의 비선형적 현상)

  • Kim, Dong-Hyuk;Kim, Jeung-Tae;Lee, Yong-Bong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.12-19
    • /
    • 1991
  • A numerical analysis is carried out for the nonlinear phenomena of the bubble oscillator. The model is based on the Keller's formulation for the bubble dynamics. Interpretation of the bubble interior is based on the formulation by Prosperetti. His formulation adopts the energy equation for the analysis of the bubble interior. The numerical simulation Shows typical nonlinear phenomena in its frequency response. Among such nonlinear aspects are the jump phenomenon, the shift of natural frequency of the system, and the appearance of superharmonic resonances. It is deduced that the nonlinear frequency response is dependent upon the initial condition of the bubble oscillator and some multi-valued frequency region can appear in the response curve. Nonlinear phenomena appeared in the bubble oscillator is compared with those of the Duffing equation and it may be said that the bubble dynamic equation has similar nonlinear aspects to the Duffing equation.

  • PDF

Response Characteristics of Forced Vibration Model with Sinusoidal Exciting Force (정현파로 가진한 강제진동 해석과 응답특성)

  • Kim, Jong-Do;Yoon, Moon-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.7
    • /
    • pp.131-137
    • /
    • 2020
  • The characteristics of forced vibration with excited sinusoidal force was introduced. Also, numerical analyses and FRF in frequency domain were performed in detail. In this regard, the responses of displacement, velocity and acceleration were investigated in a forced vibration model. The FRF characteristics in real and imaginary part around natural frequency are also discussed. This response approach of forced vibration in time domain is used for the identification and monitoring of sinusoidal forced vibration. For acquiring a displacement, velocity and acceleration, a numerical technique of Runge-Kutta-Gill method was performed. For the FRF(frequency response function), These responses are used. Also, the FRF can represent the intrinsic characteristics of the forced vibration. These performed results and analysis are successful in each damped condition for the forced vibration model. After numerical analysis of the different mass, damping and stiffness, the forced vibration response characteristics with sinusoidal force was discriminated considering its amplitude and frequency simultaneously.

Human Postural Dynamics in Response to the Horizontal Vibration

  • Shin Young-Kyun;Fard Mohammad A.;Inooka Hikaru;Kim Il-Hwan
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.3
    • /
    • pp.325-332
    • /
    • 2006
  • The dynamic responses of human standing postural control were investigated when subjects were exposed to long-term horizontal vibration. It was hypothesized that the motion of standing posture complexity mainly occurs in the mid-sagittal plane. The motor-driven support platform was designed as a source of vibration. The AC Servo-controlled motors produced anterior/posterior (AP) motion. The platform acceleration and the trunk angular velocity were used as the input and the output of the system, respectively. A method was proposed to identify the complexity of the standing posture dynamics. That is, during AP platform motion, the subject's knee, hip and neck were tightly constrained by fixing assembly, so the lower extremity, trunk and head of the subject's body were individually immovable. Through this method, it was assumed that the ankle joint rotation mainly contributed to maintaining their body balance. Four subjects took part in this study. During the experiment, the random vibration was generated at a magnitude of $0.44m/s^2$, and the duration of each trial was 40 seconds. Measured data were estimated by the coherence function and the frequency response function for analyzing the dynamic behavior of standing control over a frequency range from 0.2 to 3 Hz. Significant coherence values were found above 0.5 Hz. The estimation of frequency response function revealed the dominant resonance frequencies between 0.60 Hz and 0.68 Hz. On the basis of our results illustrated here, the linear model of standing postural control was further concluded.

Dependency of Dynamic Behavior of Circular Foundation on Ground and Foundation Characteristics (지반 및 원형기초의 특성이 기초의 동적거동에 미치는 영향)

  • Ahn, Jae-Hun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.111-117
    • /
    • 2008
  • The effect of characteristics of ground and circular foundation on the dynamic behavior of the foundation in vertical motion are considered using an approximated analytical solution and a finite element analysis with absorbing (consistent transmitting) boundary. The shear wave velocity of homogeneous ground affects the resonant frequency of the foundation much but has nothing to do with the maximum response amplitude at resonant frequency. The density in this case affects both the resonant frequency and the maximum response. The size and the mass of the circular foundation are related both to the resonant frequency and the maximum response. However, Poisson's ratio has very little effect on dynamic behavior of the foundation. When the ground is not homogeneous but has the layers, different formations of shear wave velocities would also change the maximum response at resonant frequency.

Development of Impact Factor Response Spectrum with Tri-Axle Moving Loads and Investigation of Response Factor of Middle-Small Size-RC Slab Aged Bridges (3축 이동하중을 고려한 충격계수 응답스펙트럼 개발 및 중소규모 RC 슬래브 노후교량 응답계수 분석)

  • Kim, Taehyeon;Hong, Sanghyun;Park, Kyung-Hoon;Roh, Hwasung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.67-74
    • /
    • 2019
  • In this paper the response factor is investigated for middle and small size-RC slab aged bridges. The response factor consists of static and dynamic response factors and is a main parameter in the frequency based-bridge load carrying capacity prediction model. Static and dynamic response factors are determined based on the frequency variation and the impact factor variation respectively between current and previous (or design) states of bridges. Here, the impact factor variation is figured out using the impact factor response spectrum which provides the impact factor according to the natural frequency of bridges. In this study, four actual RC slab bridges aged over 30 years after construction are considered and their span length is 12m. The dynamic loading test in field using a dump truck and eigenvalue analysis with FE models are conducted to identify the current and previous (or design) state-natural frequencies of the bridges, respectively. For more realistic considerations in the moving loading situation, the impact factor response spectrum is developed based on tri-axle moving loads representing the dump truck load distribution and various supporting conditions such as simply supported and both ends fixed conditions. From the results, the response factor is widely ranged from 0.21to 0.91, showing that the static response factor contributes significantly on the results while the dynamic response factor has a small effect on the result. Compared to the results obtained from the impact factor response spectrum based on the single axle-simply supported condition, the maximum percentage difference of the response factors is below 3.2% only.

Analysis of Seismic Response due to the Dynamic Coupling Between a Primary Structure and Secondary System (구조물과 부계통간의 연계방법에 따른 지진응답 분석)

  • Jung, Kwangsub;Kwag, Shinyoung;Choi, In-Kil;Eem, Seunghyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.87-93
    • /
    • 2020
  • Seismic responses due to the dynamic coupling between a primary structure and secondary system connected to a structure are analyzed in this study. The seismic responses are compared based on dynamic coupling criteria and according to the error level in the natural frequency, with the recent criteria being reliant on the error level in the spectral displacement response. The acceleration responses and relative displacement responses of a primary structure and a secondary system for a coupled model and two different decoupled models of two degrees-of-freedom system are calculated by means of the time integration method. Errors in seismic responses of the uncoupled models are reduced with the recent criteria. As the natural frequency of the secondary system increases, error in the natural frequency decreases, but seismic responses of uncoupled models can be underestimated compared to that of coupled model. Results in this paper can help determine dynamic coupling and predict uncoupled models' response conservatism.

Forced vibration of the elastic system consisting of the hollow cylinder and surrounding elastic medium under perfect and imperfect contact

  • Akbarov, Surkay D.;Mehdiyev, Mahir A.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.113-123
    • /
    • 2017
  • The bi-material elastic system consisting of the circular hollow cylinder and the infinite elastic medium surrounding this cylinder is considered and it is assumed that on the inner free face of the cylinder a point-located axisymmetric time harmonic force, with respect to the cylinder's axis and which is uniformly distributed in the circumferential direction, acts. The shear-spring type imperfect contact conditions on the interface between the constituents are satisfied. The mathematical formulation of the problem is made within the scope of the exact equations of linear elastodynamics. The focus is on the frequency-response of the interface normal and shear stresses and the influence of the problem parameters, such as the ratio of modulus of elasticity, the ratio of the cylinder thickness to the cylinder radius, and the shear-spring type parameter which characterizes the degree of the contact imperfectness, on these responses. Corresponding numerical results are presented and discussed. In particular, it is established that the character of the influence of the contact imperfection on the frequency response of the interface stresses depends on the values of the vibration frequency of the external forces.

Experimental Verifications of Fatigue Crack Identification Method Using Excitation Force Level Control for a Cantilever Beam (외팔보에 대한 가진력수준제어를 통한 피로균열규명기법의 실험적 검증)

  • Kim Do-Gyoon;Lee Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1467-1474
    • /
    • 2004
  • In this study, a new damage identification method for beam-like structures with a fatigue crack is proposed. which does not require comparative measurement on an intact structure but require several measurements at different level of excitation forces on the cracked structure. The idea comes from the fact that dynamic behavior of a structure with a fatigue crack changes with the level of the excitation force. The 2$^{nd}$ spatial derivatives of frequency response functions along the longitudinal direction of a beam are used as the sensitive indicator of crack existence. Then, weighting function is employed in the averaging process in frequency domain to account for the modal participation of the differences between the dynamic behavior of a beam with a fatigue crack at the low excitation and one at the high excitation. Subsequently, a damage index is defined such that the location and level of the crack may be identified. It is shown from the analysis of vibration measurements in this study that comparison of frequency response characteristics of a beam with a single fatigue crack at different level of excitation forces enables an effective detection of the crack.