Nonlinear Aspects of the Frequency Response of a
Gas-filled Bubble Oscillator
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ABSTRACT

A numerical analysis is carricd out for the nonlincar phenomena of the bubble oscillator. The model 15 based on the
Keller's formulation for the bubble dynamics. Interpretation of the bubble interior i1s based on the formulation by
Prosperetts, His formulation adopts the energy equation for the analysis of the bubble interior. The numerical simuilation
Shows typical nonlinear phenomena in ils frequency response, Among such nonlinear aspects are the jump phenome
non, the shift of natural frequency of the system, and the appearance of superharmonic resonances, It is deduced that
the nonlinear frequency response is dependent upon the initial condition of the bubble oscillator and some multi-valued
frequency region can appear in the response curve, Nonlinear phenomena appeared in the bubble oscillator is compared
with those of the Duffing equation and it may be said that the bubble dynamic equation has similar nonlinear aspects

to the Duffing equation.
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] . introduction

It is Ravleigh that firstlv made attempt to analyz
e the problem in cavitation and the bubble dyna-
mics, He assumed that the gas filling the bubble
undergoes isothermal compression. Neglecting sur-
face tension and liquid viscosity and assuming
hquid incompressibility, he established the famous

“Raleigh equation”,

Ri+ 3= BB -Pe ()
2 PL
Here, A is the liquid density, p_ is the pressure
in the hquid at a large distance from the bubble,
and p(R) is the pressure in the liquid at the
bubble surface. But Rayleigh's formuilation is
applicable only for small amplitude oscillation of
a bubble because of the isothermal assumption.
For large amphtude of bubble oscillation, internal
temperature and pressure of a bubble change so
much that the isothermal assumption fails. These
wternal quantities are very importnat to determine
the dynamics of a gas bubble. Although these
quantities should be determuned based on the
solution of the conservation equation of continuum
mechanics inside and outside the bubble joined
togerther by suitable boundary conditions, it was

customary to use a polytropic relation of the form

p = po( Ro/ R)™ {2

where # is the polytropic index and subscript zero
indicates equilibrium values. This polytropic relation
was firstly used by Minneart[1]. Since then most
researchers such as Noltingk and Neppiras[2],
Flynn{3], Apfel[4], and Lauterborn{5] have used

the relation.
Although this relation is simple to use, it has

many problems due to its neglecting thermal effect

it

i ihe bubble which s very wmportard one i the
idrge amplitude oscilation of a gas bubble, The
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remely difficult to find an appropriate criteria for
the proper choice of value for large ampiitude
vscillation of a bubble.

An accurate mathematical formulation was
proposed by Prosperettil 6] for calculation of high
amplitude bubble oscillation. He intoduced the
energy equation to dectermine the interior quant -
ities of a bubble in addition to the conservation
of mass and momenturn,

This paper investigaies some nonhnear charac-
teristics of a single bubble oscillating with large
amplitude based on the formulalion by Prosperetti,
Of many nonlinear phenomena, the frequency
response is of special interest in this paper, Freg-
uency response for different amplitude of exciting
pressure are calculated and the hysteresis effect.
the jump phenomenon. the change of natural
(requency and the appearance of subharmonics

and superharmomics are examined.
Il. Mathematical Formulation

The bubble dynamic equation proposed by
Rayleigh in {917 did nol consider liquid viscosity
and surface tension, When the compressibility of
the hquid is the only thing to be neglected, the
maotion of the bubbie boundary 15 governed by the
woll Liown Rayleigh Plesset equation,
pURR + SR) = poo = pilt) - 22— 4

{3)

where p.(f) s a nonconstant ambient pressure
component such as a sound field. The surface
tension and viscosity are denoted by ¢ and .,

respectively.
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where < is the speed of sound in the liquid and
putty is the fiquid pressure on the external side
of the bubble wall, This pressure pa(f) is related
to the internal bubble pressure p{1) by
P(t}=PB(Rsf)+%J+4#L% (5)
Smee the Keller's fenmulation 1s the most complete
one, it 15 used as the basis of our numerical model
to examine the nonlinear [requency response of
the bubble oscillation. As can be seen in Eq, (
33, the form of the equation has high nonlinearity.
Lip 10 now, it seems to be impossible to solve the
nonlinear equation analytically. The only thing we
can do is (o linearize the cquation for simall amp-
litude of e.cciting pressure. Morcover, the pressure
at the bubble surface, puis), 13 closely related to
the internal pressure which creates a very complex
nonlinear system, Hence the first step is deseribing
the bubble interior accurately, Prosperetti introduced
the energy equation in order to interpret the bubble
miterior. For small amplitude of pressure disturba-
nee, the temperature effects are neghgible, How-
ever the temperature effects such as conduction
become more mportant as the exciting pressure
amplitude becomes stronger. So it s inevitable to
use Progperetti's formulation to govern the bubble
interior {or large amplitude of bubble oscillation,
The governmg equations for bubble interior are

dPG
dt

SR 10 B 1 RIS

dv  Op (7)
det+3r =0

dT T (8pc) Op
al L (%6} P _ g.(KVT), .
paCr +pg(a'r),a: V- (KVT): i3

whrer v, €, 1 denotes the velocity field in the
bubble, specific heat of the gas and the temper-
ature field in the bubble, respectively.

Along with the equations from(6) to (8), we
need boundary conditions at the bubble surface.
The correct boundary conditions are continuity of
temperature and heat flux. From the continuity
of heat flux, it is easily deduced that the tempe-
rature variation of the surrounding liguid is negl-
igible compared to that inside the bubble, The

continuity of temperature gives
T(R,t) =Ty (9)

The dynamics of a bubble can be solved by the
numerical method based on th equation (4) to
(9). For more details, it is recommended to refer
to the paper by Prosperetti(6].

In the dynamic equation(4), p«(7) denotes the
fluctuating pressure component on the ambient
pressure. It is custormary to set p.(¢) using harm-

onic function as
p,(t) = gcos wi, (10}

where w 1s the angular frequency, ¢ the amplitude
of pressure fluctuation,

There are many ways of indicating the level
of bubble oscillation. One is to take the ratio of
the maximum radius of the bubble to the minimum
during an oscillating cycle in the steady-state,
Another one is to take the pressure instead of the
radius of a bubble, In this paper, it is adopted to
take the quantity of work done during a cycle.
The method is based on the fact that the work
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done by a bubble to the surrounding fimd is pr
portional to the level of bubble oscillation. 1The
work done by o hubbl Ao U

expressed as

w I .
P = 2‘?[ 4R’ Rp,(t)dt. (11}
The integration is done by using a numernical
method based on the quadrature formula,

The next step 1s to nondimensionalize the above
equations which govern the dynamics of 3 hbubble
motion after noncimensionahzation, a predictor -
corrector method is adaptea to solve the syslent
of partial differential equations. The method 1s best
fitted for highly nonlinear equations such as those
related to the hubble dvnantics. Details ol these

manipulations can be found m roference; |
[I. Characteristics of nonlinear equations

In general, it is uinpossibic te {ind the solution
of a nonlinear equation ana.ytically. The solutions
can be obtained for some special cases, Among
these are the “Van der Pole” equation and *
Duffing” equation[ 7| Of these two, the Duffing
equation has similar characteristics as the bubble
dynamic equation, The Duffing equation can be

mathematically expressed as

i 4wl =ef(u,u)+ E. (12}

whrer €41 and # i an externally anplied. generaliz
od force called the excitation., Although the Iaffing
equation and the Rayleigh- Plesset equation are
different in their style, the frequency responses
of these two equations have many similar aspects.

The solution of Eq. (12) has the following form

u = g cos(U — v) + olé€). (13}

Here. a and ¥ are constante that depend on the

A

amplitude and {requensy of the excitation and the
mual conditions. The state plane for this eguation

a0 N can be seen o Fig b e
exist three solutions, The trajgectores show how the
reponse progresses toward a steady state solulion
from anv imitial conditions, For all the initial con-
ditions lying in the shaded area, the high-amphtude
steady state il develop, while for all the initial
conditions lving i the unshaded area, the low-
amplitude steady state will develop, We note that
the two inward bound separatrices for the saddle
point, P. separate the domains of attraction for

the stable steady states, This means that the
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Fig. 1. State-plane for the Duffing equation when three
steady -state solution exist : P, is the upperbranch
stable focus, /% is the saddle point, and #, is
the lowerbranch stable focus, (from Navfeh &
Mook )



16

steady state solution can depend on the initial

conditions, which 13 typical 1in nonlinear systerns,
Other nondinear characteristics of the frequency

response: of the Duffing eguation are as follows,

» The excitation changes the natural frequency
of the system. The natural frequency increases
for hardening spring system and decreases for
softening spring system,

« There appear many subharmonics and superha-
rmonics n the frequency response curve and
the magnitude of the harmonics gets bigger as

the excitation gets stronger,

IV. Numerical solution of the bubble oscillator
and discussions

As explained in the previous section, the initial
conditions are crucial to reach a solution for non-
linear systems. In the frequency response of a
nonhinear system, there mav exist multiple solutions
in some frequency band., The solution depends on
the initial conditions,

To verify these characteristics in the bubble
oscillator, some numerical simulations are conducted,
The exciting frequency is slowly increased or
decreased so that the steady-state oscillation of
a bubbie is reached, When the system reaches to
the steady-state the value of the work done by
the oscillation is taken. The frequecny and the
work done are dimensionless valves, Here the
absolute value of the work done does not have
any meaning. Rather, it may be understood as
relative value, Dimensionless frequency is defined
as the exciting frequency divided by the natural
frequency of the bubble oscillator. The frequency
increment is set to 0.01, which i1s small enough
to observe the nonlinear phenomena of the frequ-
ency response in the bubble oscillator, As the
exciting frequency moves to another frequecny

by the increment 001, the final condition at the
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Mg, 2. Frequency response curves of the excited bubble
of 1 mm radius. The dimensionless amplitude
of the exciation & is {,1. The solid line represents
linearized sohution.

previous exciting frequency becomes the initial
condition of the next one. It gives unique “path-
dependent” solutions in the frequency response
curve, Fig. 2 shows the frequecny response
curves of the bubble oscillator with its radius of
1 mm. The amplitude of excitation is 0.1, which
is dimensionless value defined as the pressure
divided by ambient pressure P. The solid line
represents the linear solution. The thick dotted-line
is the sloution which is cbtained by solwly incre-
asing the exciting frequency and the thin dotted-
-line the solution by slowly decreasing the exciting
fiequency. From the figure it is easily seen that
the natural frequency is changed to a lower fre-
quency either for “increasing” case or “decreasing”
case. In the light of the Duffing equation, we can
say that the bubble oscillator is a “softening”
system as the natural frequency changes (0 a
lower one, The values of work done for "increas-
ing” case vary slowly as frequency goes up and
show a superharmonic resonance around f/ fo=
0.5. And it makes a jump around f/ fo=09. This
ump phenomenon is typical to the nonhnear osc-
illator system as bubbie, The jump phenomenon
also occurs for “decreasing” case at a lower freq-

uency than for the “increasing” case so that there
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conditions. ‘These two solutions are stable foci in
the stale plane, which i» (he samce as the case
of the Duffing cquation. Another solution cxists
between the (wo solutions and that s the saddlc
point n the  stale-plane. Tlowever this solution
is so unstable that it is almost impessible to find
the exact value by the numerical method, It is
because the initial conditions for that solution is

extremely difficult to find.
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Fig. 3. Frequency reponse curves of the excited bubble
of lmm radius, The dimensionless amplitude
of the excitation & s 0.3

Fig. 3 shows the frequency response curve for
the increased exciting pressure amplitude. The
amplitude has been changed from 0.1 to 0.3 and
the result shows higher nonlinearily in the response
curve., The solid line denotes the “increasing” case
and he dotted hine the “decreasing” case. Tt I8
observed that more superharmonic resonances occur
at the dimensionless frequencies of .25, .33, and
around 0.5. There appear another regions of
multi-valued solutions. And the multi-valued reg-
ions become wider than for e=(.1 case. All these
aspects can be explained by “higher nonlinearity”.

The next example is for the bubble radius of

0.05 mm with the exciting amplitude of e=0.1,
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the case for 1 mm radius. And the “increasing”
dand "decreasing™ cases de not dilfer so much. Based
on the result, it v be deduced that the smaller
hubble has less nonlinearity in its frequency resp-
onse. because the smaller bubble has higher stif-
fness than the larger one.

Final example, Fig.5, shows the noniinear freg-
uency response for e=0.3 with the bubble radius
of 0.05 mm. Although the smaller bubble has less

nonlinearity. it still gives highly nonlinear pheno
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Fig. 4, Frequency response curves of the excited bubble
of 005 m radius. The dimensionless amplitude
of the oxciation € is (L1
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Fig. 5. Frequency response curves of the excited bubble
of 0.05 mm radius. The dimensionless amplitude
of the excitation € is 0.3.
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Y . Conclusions

The tarhbde oscidlator s very comples systenn,

A bithliie ssador by Redlor and Prosperettt i ada
piedd foosobve dhe noulbwar escldlabion of @ bubble,

This formuiztion by we accorare results sinee
the vnergy et s intradeced 1o the governing
cyuitone: for the Dubble mntcrnor, Numnerical simu
lations are condiocted to gel the fronquency response
curve of the exciled hubble, The numerncal results
show some interesting vonlinear phenomena  for
N bubble oscilaten, The exataton changes the
naliran freguency of the bubble wnd makes some
stwerhammone resotances b =121/ 3.
it 15 found thal there exist mulli- valued regions
in the frequency rosponse curve doe to the effect
of the mitial conditions, In addition, the frequency
FESPONSE CLrve mps dip or down at a certam

frequecny. The smaller bubble bas less »onlinearity
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than the bigger one and this van be explaiped by

the stiffiess of the bubhble, .
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